So sanh
A=2015^2015 + 1/ 2016^2016 + 1
B=2015^2014 + 1/ 2015^2015 + 1
1,Tính nhanh
[2015*2015*2014-2014-2014*2015]*[2016*2016+2015*2015*2016]
So sánh 2 phân số : A=2015^2016+1/2015^2015+1 và B=2014^2015+1/2014^2014+1
so sánh:
A=2015^2014+1/2015^2015+1 va B=2015^2015+1/2015^2016+1(giup mk vs)
gọi \(A=\frac{2015^{2015}+1}{2015^{2016}+1};B=\frac{2015^{2014}+1}{2015^{2015}+1}\)
\(\Rightarrow A=\frac{2015^{2015}+1}{2015^{2016}+1}<\frac{2015^{2015}+2014+1}{2015^{2016}+2014+1}=\frac{2015^{2015}+2015}{2015^{2016}+2015}=\frac{2015\left(2015^{2014}+1\right)}{2015\left(2015^{2015}+1\right)}=\frac{2015^{2014}+1}{2015^{2015}+1}=B\)
1) So sánh 20162015 và 20152016
2) So sánh 22014 và 5891
3) So sánh (20152016+20162016)2015 và (20152015+20162015)2016
Ta có:
\(\left(2015^{2015}+2016^{2015}\right)^{2016}=\left(2015^{2015}+2016^{2015}\right)^{2015}.\left(2015^{2015}+2016^{2015}\right)\)
\(>\left(2015^{2015}+2016^{2015}\right)^{2015}.2016^{2015}=\left[\left(2015^{2015}+2016^{2015}\right)2016\right]^{2015}\)
\(>\left(2015^{2015}.2015+2016^{2015}.2016\right)^{2015}=\left(2015^{2016}+2016^{2016}\right)^{2015}\)
Vậy \(\left(2015^{2015}+2016^{2015}\right)^{2016}>\left(2015^{2016}+2016^{2016}\right)^{2015}\)
1. Ta sẽ chứng minh \(2015^{2016}>2016^{2015}\)
\(\Leftrightarrow2016^{2015}-2015^{2016}< 0\Leftrightarrow2016^{2016}-2016.2015^{2016}< 0\)
\(\Leftrightarrow2016.2016^{2016}-2015.2016^{2016}-2016.2015^{2016}< 0\)
\(\Leftrightarrow2016\left(2016^{2016}-2015^{2016}\right)< 2015.2016^{2016}\)
\(\Leftrightarrow2016\left(2016^{2015}+2016^{2014}.2015+...+2015^{2015}\right)< 2015.2016^{2016}\)
\(\Leftrightarrow2016^{2015}.2015+...+2016.2015^{2015}< 2014.2016^{2016}\)
\(\Leftrightarrow2016^{2014}.2015+2016^{2013}.2015^2+...+2015^{2015}< 2014.2016^{2015}\)
\(\Leftrightarrow2015^{2015}< \left(2016^{2015}-2015.2016^{2014}\right)+\left(2016^{2015}-2015^2.2016^{2013}\right)\)
\(+...+\left(2016^{2015}-2015^{2014}.2016\right)\)
\(\Leftrightarrow2015^{2015}< 2014.2016^{2014}+2013.2016^{2014}.2015+...+2016.2015^{2013}\)
Lại có \(2015^{2015}=2014.2015^{2014}+2015^{2014}< 2014.2016^{2014}+2015^{2014}\)
Mà \(2015^{2014}< 2013.2016^{2014}.2015\)
nên \(2015^{2014}< 2014.2016^{2014}+2013.2016^{2014}.2015+...+2016.2015^{2013}\)
Vậy \(2015^{2016}>2016^{2015}.\)
So sánh: 20152015+1/20152016+1 và 20152014+1/20152015+1
cac ban sai het ruk do. phai la 70 moi dung.
cai nao lon hon the ban dang nay minh dang tit ne
so sánh 2014/2015 và 2015+2015/2016 với 2014+2015/2015+2016
SO SÁNH 2014 /2015 + 2015/2016 VỚI 2014+2015/2015 + 2016
\(\frac{2014}{2015}\) +\(\frac{2015}{2016}\) < 2014+\(\frac{2015}{2015}\) +2016
so sánh:2014+2015/2015+2016 và 2014/2015+2015/2016
1) CMR : A=(n+2015)(n+2016) + n2 + n chia hết cho 2 với n ϵ N
2) So sánh :
P = \(\frac{2013}{2014^{2013}}+\frac{2014}{2015^{2014}}+\frac{2015}{2016^{2015}}+\frac{2016}{2017^{2016}}\) và
Q = \(\frac{2014}{2017^{2016}}+\frac{2013}{2016^{2015}}+\frac{2016}{2015^{2014}}+\frac{2015}{2014^{2013}}\)
A = (n + 2015)(n + 2016) + n2 + n
= (n + 2015)(n + 2015 + 1) + n(n + 1)
Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2
=> (n + 2015)(n + 2015 + 1) chia hết cho 2
n(n + 1) chia hết cho 2
=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2
=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)