A=1/2 +1/2^2+1/2^3+......+1/2^2018
cmr A<1
b,(1+x+x^2)(1-x)(1+x)(1-x+x^2)
c,(a+1)(a+2)(a^2+4)(a-1)(a^2+1)(a-2)
d,(-3a^3+a^6+9)(a^3+3)
e,(a^2-1)(a^2-a+1)(a^2+a+1)
e: \(\left(a^2-1\right)\left(a^2+a+1\right)\left(a^2-a+1\right)\)
\(=\left(a^3-1\right)\left(a^3+1\right)\)
\(=a^6-1\)
b: Ta có: \(\left(1+x+x^2\right)\left(1-x\right)\left(1+x\right)\left(1-x+x^2\right)\)
\(=\left(1-x^3\right)\left(1+x^3\right)\)
\(=1-x^6\)
c: \(\left(a+1\right)\left(a+2\right)\left(a^2+4\right)\left(a-1\right)\left(a^2+1\right)\left(a-2\right)\)
\(=\left(a+1\right)\left(a-1\right)\left(a^2+1\right)\left(a+2\right)\left(a-2\right)\left(a^2+4\right)\)
\(=\left(a^2-1\right)\left(a^2+1\right)\left(a^2-4\right)\left(a^2+4\right)\)
\(=\left(a^4-1\right)\left(a^4-16\right)\)
\(=a^8-17a^4+16\)
d: \(\left(a^3+3\right)\left(a^6-3a^3+9\right)\)
\(=\left(a^3\right)^3+3^3\)
\(=a^9+27\)
Rút gọn các biểu thức sau:4
a,(x-2)^3-x(x-1)(x+1)+6x(x-3)
b,(2x-3y^2-5)^2-(3y^2-2x+5)^2
c,(a^2-1)(a^2+a+1)(a^2-a+1)
d,(a-2)(a-1)(a-1)(a+2)(a^2+1)(a^2+4)
e,(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)
f,1^2-2^2+3^2-4^2+...+2015^2-2016^2
rút gọn các biểu thức:
a A= căn(1+1/a^2+1/(a+1)^2)với a>0
b=căn(1+1/1^2+1/2^2)+căn(1+1/2^2+1/3^2)+căn(1+1/3^2+1/4^2)+...+căn(1+1/99^2+1/100^2)
`A=sqrt{1+1/a^2+1/(a+1)^2}`
`=sqrt{1/a^2+2/a+1-2/a+1/(a+1)^2}`
`=sqrt{(1/a+1)^2-2/a+1/(a+1)^2}`
`=sqrt{(a+1)^2/a^2-2.(a+1)/a.(1/(a+1))+1/(a+1)^2}`
`=sqrt{((a+1)/a-1/(a+1))^2}`
`=|(a+1)/a-1/(a+1)|`
`=|1+1/a-1/(a+1)|`
`a>0=>1/a>1/(a+1)=>1+1/a-1/(a+1)>0`
`=>A=1+1/a-1/(a+1)`
Áp dụng công thức ở A ta tính được
`B=1+1/1-1/2+1+1/2-1/3+1-1/3+1/4+.......+1+1/(n-1)-1/n`(ở sau bạn không ghi rõ nên mình đặt số cuối là n)
`=underbrace{1+1+....+1}_{\text{n chữ số 1}}-1/n`
`=n-1/n`
Bài 3: Rút gọn biểu thức: a) (a+1)^2-(a-1)^2-3(a+1)(a-1) b) (m^3-m+1)2+(m^2-3)^2-2(m^2-3)(m^3-m+1) Bài 4: Tìm x, biết: a) ( 5x +1)^2 – ( 5x +3)( 5x – 3) = 3 b) (3x-5)(5-3x)+9(x+1)^2=30 c) (x+4)^2-(x+1)(x-1)=16 Bài 5: So sánh hai số A và B: a) A=(3+1)(3^2+1)(3^4+1)(3^8+1)(3^(16)+1) và B=3^(32)-1 b) và A= 2011.2013 và B=2012^2 Bài 6: a) C/ m HĐT : (a+b+ c)^2 = a^2 +b^2 + c^2 +2ab +2ac + 2bc b)Áp dụng: cho x^2 + y^2 + z^2 = 5. Tính giá trị biểu thức: A = ( 2x + 2y – z)^2 + ( 2y + 2z – x)^2 + ( 2z+2x – 2y)^2 Bài 7: Cho 5x^2 + 5y^2 + 8xy - 2x + 2y +2 = 0 Tính giá trị biểu thức B = ( x + y ) ^2018 + ( x -2)^ 2019 + ( y +1)^2020
\(3,\\ a,=a^2+2a+1-a^2+2a-1-3a^2+3=-3a^2+4a+3\\ b,=\left(m^3-m+1-m^2+3\right)^2=\left(m^3-m^2-m+4\right)^2\\ 4,\\ a,\Leftrightarrow25x^2+10x+1-25x^2+9=3\\ \Leftrightarrow10x=-7\Leftrightarrow x=-\dfrac{7}{10}\\ b,\Leftrightarrow-9x^2+30x-25+9x^2+18x+9=30\\ \Leftrightarrow48x=46\Leftrightarrow x=\dfrac{23}{24}\\ c,\Leftrightarrow x^2+8x+16-x^2+1=16\\ \Leftrightarrow8x=-1\Leftrightarrow x=-\dfrac{1}{8}\)
Tính:
a, (3a^2-1/2)^3+(a^3+1/4)^2-(a+1)^3
b,(1/3a^2-1/2b).(1/3a^2-1/2b)-(a+1/2b)-(a+1/2b).(a^2-1/2ab)+1/4b^2
a, 2.x.(x-1)^2-3.x.(x+3).(x-3)-4.x.(x+1)^2
b,(a-b+c)^2-(b-c)^2+2.a.b-2.a.c
c,(3.x+1)^2-2.(1+3.x).(3.x+5)+(3.x+5)^2
d, (3+1).(3^2+1).(3^4+1).(3^8+1).(3^16+1).(3^32+1)
e, (a+b-c)^2+(a-b+c)^2+(b-c-a)^2+(c-a-b)^2
9.2^x.(2^1005-2^1002+.....+2^3-1)=2^1008-1 *
A=2^1005-2^1002+...+2^3-1 2^3 .
A=2^2.(2^1005-2^1002+......+2^3-1) 8.
A=2^1008-2^1005+.....+2^6-2^3
A=2^1005-2^1002+.....+2^3-1 8.A+A=2^1008-1 9.
A=2^1008-1
Thay 9.a=2^1008-1 vào * ta có: 2^x.(2^1008-1)=2^1008-1
2^x=(2^1008-1):(2^1008-1)
2^x=1
2^x=2^0
x=0
vậy x=0
Lập đề bài cho bài toán này
Rút gọn biểu thức :
a) ( a + 1 ) ^2 - ( a - 1 ) ^2 - 3 ( a + 1 ) ( a - 1 )
b) ( m ^3 - m + 1 ) ^2 + ( m ^2 - 3 ) ^2 - 2 ( m^2 - 3 ) ( m ^3 - m + 1 )
a, Cho A= 1/99 + 2/98 + 3/47 + .......... + 98/2 + 99/1
B= 1/2 + 1/3 + 1/4 + ..........+ 1/99 + 1/100
Tính B/A
b, Cho A= 1/49 + 2/48 + 3/47 +.......+ 48/2 +49/1
B= 1 + 2/3 + 2/4 +......+ 2/49 + 2/50
Tính A/B
a: \(A=\left(\dfrac{1}{99}+1\right)+\left(\dfrac{2}{98}+1\right)+...+\left(\dfrac{98}{2}+1\right)+1\)
\(=\dfrac{100}{99}+\dfrac{100}{98}+...+\dfrac{100}{2}+\dfrac{100}{100}\)
\(=100\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)\)=100B
=>B/A=1/100
b: \(A=\left(\dfrac{1}{49}+1\right)+\left(\dfrac{2}{48}+1\right)+\left(\dfrac{3}{47}+1\right)+...+\left(\dfrac{48}{2}+1\right)+\left(1\right)\)
\(=\dfrac{50}{49}+\dfrac{50}{48}+....+\dfrac{50}{2}+\dfrac{50}{50}\)
\(=50\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)\)
\(B=\dfrac{2}{2}+\dfrac{2}{3}+\dfrac{2}{4}+...+\dfrac{2}{49}+\dfrac{2}{50}\)
\(=2\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)\)
=>A/B=25
Rút gọn các biểu thức sau:
a) 2x(2x-1)^2 - 3x(x+3)(x-3) - 4x(x+1)^2
b) (a-b+c)^2 - (b-c)^2 + 2ab-2ac
c) (3x+1)^2 - 2(3x+1)(3x+5) + (3x+5)^2
d) (3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)(3^32+1)
e) (a+b-c)^2 + (a-b+c)^2 - 2(b-c)^2
g) (a+b+c)^2 + (a-b-c)^2 + (b-c-a)^2 + (c-a-b)^2
h) (a+b+c+d)^2 + (a+b-c-d)^2 + (a+c-b-d)^2 + (a+d-b-c)^2