cho tứ giác MNPQ có 2 đường chéo vuông góc mp=4cm ,NQ=7cm.tinh s MNPQ
Cho tứ giác MNPQ có 2 đường chéo cắt nhau tại E và có cạnh MN=MQ;NP=PQ.Chứng minh a)MP là đường phân giác của góc M và P b) MP vuông góc với NQ Mn giúp em với Em cảm ơn ạ❤️
a.
Xét hai tam giác MNP và MQP có:
\(\left\{{}\begin{matrix}MN=MQ\\NP=PQ\\MP\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta MNP=\Delta MQP\left(c.c.c\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\widehat{NMP}=\widehat{QMP}\\\widehat{NPM}=\widehat{QPM}\end{matrix}\right.\) hay MP là phân giác của góc M và P
b.
Do \(\left\{{}\begin{matrix}MN=MQ\\NP=PQ\end{matrix}\right.\) \(\Rightarrow MP\) là trung trực NQ
\(\Rightarrow MP\perp NQ\) (đpcm)
cho tứ giác MNPQ có MP vuông góc vs NQ. MP = 18cm, NQ = 24cm. Hãy tính diện tích của tứ giác đó
Gọi MP ∩ NQ = {O}
Ta có :
\(S_{MNPQ}=S_{MON}+S_{NOP}+S_{POQ}+S_{QOM}\)
\(\Rightarrow S_{MNPQ}=\frac{1}{2}OM.ON+\frac{1}{2}ON.OP+\frac{1}{2}OP.OQ+\frac{1}{2}OQ.OM\)
\(\Rightarrow S_{MNPQ}=\frac{1}{2}OM\left(ON+OQ\right)+\frac{1}{2}OP\left(ON+OQ\right)\)
\(\Rightarrow S_{MNPQ}=\frac{1}{2}OM.NQ+\frac{1}{2}OP.NQ\)
\(\Rightarrow S_{MNPQ}=\frac{1}{2}NQ\left(OM+OP\right)\)
\(\Rightarrow S_{MNPQ}=\frac{1}{2}NQ.MP\)
\(\Rightarrow S_{MNPQ}=\frac{18.24}{2}=216\left(cm^2\right)\)
Vậy diện tích tứ giác MNPQ là 216 cm2
Cho tứ giác MNPQ. Gọi E, F , G, H lần lượt là trung điểm các cạnh MN, NP, PQ, QM. Tứ giác EFGH là hình thoi nếu 2 đường chéo MP, NQ của tứ giác MNPQ:
A. Bằng nhau
B. Vuông góc
C. Vuông góc với nhau tại trung điểm mỗi đường
D. Cắt nhau tại trung điểm mỗi đường.
Tứ giác MNPQ có MP vuông góc với NQ và MP =12cm , NQ=8cm. Khi đó diện tích của MNPQ là ________ \(cm^2\)
công thức tính diện tích của tứ giác có 2 đường chéo vuông góc nhau là: tích 2 đường chéo chia 2
Áp dụng: kết quả là 48cm2
Cho tứ giác MNPQ sao cho hai đường chéo MP và NQ vuông góc với nhau. Gọi I, K, R, S theo thứ tự là trung điểm của các cạnh MN, NP, PQ, QM.
a) Chứng minh IKRS là hình chữ nhật
b) Điều kiện để IKRS là hình vuông
c) SIKRS biết MP=8cm; NQ=14cm
Cho tứ giác MNPQ nội tiếp đường tròn đường kính MQ. Hai đường chéo MP và NQ cắt nhau tại E. Gọi F là điểm thuộc đường thẳng MQ sao cho EF vuông góc với MQ. Đường thẳng PF cắt đường tròn đường kính MQ tại điểm thứ 2 là K. Gọi L là giao điểm của NQ và PF. Chứng minh rằng: NQ.LE = NE.LQ
Cho hình tứ giác MNPQ có hai đường chéo MP và NQ cắt nhau tại O . Biết diện tích các hình tam giác MNO ; NPO ; OPO lần lượt là : 670cm2 2010cm2 2070cm2 . Diện tích tứ giác MNPQ là : ................... ( nhớ cho tớ cách làm nhé )
Hình tứ giác MNPQ có hai đường chéo MP và NQ cắt nhau tại O. Biết diện tích các hình tam giác MNO; NPO; OPQ lần lượt là : 670cm; 2010cm; 2070cm. Diện tích tứ giác MNPQ là : ……….cm
Cho hình vuông ABCD, O là giao điểm hai đường chéo AC và BD . Trên đường thẳng vuông góc với mp(ABCD) tại B, lấy điểm S và nối S với A,B,C,D a)Chứng minh mp(SAC) vuông góc mp(SBD)
b) gọi m,n,p,q lần lượt là trung điểm của sa ,sb,sc,sd .chứng minh mp(mnpq)//mp(abcd)
c)tứ giác mnpq là hình gì? tính diện tích của tứ giác khi biết ab=a