BÀI 1:cho tam giác ABC (AB<AC; góc BAC>90). gọi I,K theo thứ tự là trung điểm AB,AC. hai đường tròn (I),(K) đường kính AB,AC cắt nhau tại điểm thứ hai D. tia BA cắt đường tròn (K) tại điểm thứ hai E, tia CA cắt đường tròn (i) tại điểm thứ hai F. chứng minh: a, ba điểm B,C,D thẳng hàng. b, tứ giác BFEC nội tiếp c, AD,BF,CE đồng qui d, tia DA là phân giác góc EDC
BÀI 2: Từ điểm M nằm ngoài đường tròn(0;R) vẽ 2 tiếp tuyến MA,MB và cát tuyến MCD. gọi I là trung điểm CD, gọi E,F,K lần lượt là giao điểm của đường thẳng AB với MO, MD, OI. chứng minh: a, R= OE.OM= OI.OK B, chứng minh M,A,B,O,I nằm trên một đường tròn