Cho 2 biểu thức : A = 2016.1+2015.2+....+1.2016 và B = 1.2 +2.3+....+2016.2017
Tính 4A^2-B^2
Tính A=2016.1+2015.2+2014.3+...+1.2016
Cho \(M=\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2016\right)}{2016.1+2015.2+2014.3+...+2.2015+1.2016}\)
Câu hỏi:
Cho M=
1+(1+2)+(1+2+3)+…+(1+2+3+…+2016)
____________________________________________
2016.1+2015.2+2014.3+…+2.2015+1.2016
Ai trả lời đúng nhất và nhanh nhất mình tick nha<3
*Lưu ý: Làm cụ thể nhoa
Câu hỏi:
Cho M=
1+(1+2)+(1+2+3)+…+(1+2+3+…+2016)
____________________________________________
2016.1+2015.2+2014.3+…+2.2015+1.2016
Ai trả lời đúng nhất và nhanh nhất mình tick nha<3
*Chú ý: Cách làm cụ thể, not spam
cho biết \(A=\frac{2016^2+1^2}{2016.1}+\frac{2015^2+2^2}{2015.2}+\frac{2014^2+3^2}{2014.3}+...+\frac{1009^2+1008^2}{1009.1008}\) ;B=\(\frac{1+1+1+1+...+1+1}{2+3+4+..+2017}\)tìm \(\frac{A}{B}\)
Mình nghĩ là bạn chép nhầm đề vì nếu là vô số số 1 thì không thể tính được. Đề đúng phải là:
Cho \(A=\frac{2016^2+1^2}{2016.1}+\frac{2015^2+2^2}{2015.2}+...+\frac{1009^2+1008^2}{1009.1008}\); \(B=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}\)
Tính \(\frac{A}{B}\)
Ta có: \(A=\frac{2016^2+1^2}{2016.1}+\frac{2015^2+2^2}{2015.2}+...+\frac{1009^2+1008^2}{1009.1008}\)
\(=\frac{2016}{1}+\frac{1}{2016}+\frac{2015}{2}+\frac{2}{2015}+...+\frac{1009}{1008}+\frac{1008}{1009}\)
\(=\frac{2016}{1}+\frac{2015}{2}+...+\frac{1}{2016}\)
\(=1+\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{1}{2016}+1\right)\)
\(=1+\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2016}\)
\(=2017\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}\right)\)
\(\Rightarrow\frac{A}{B}=\frac{2017\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}=2017\)
Xem kỹ là số
\(B=\frac{1+1+...+1}{2+3+...+2016}\) hay \(B=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\) nhé b
Cho biểu thức A=1.2+2.3+3.4+...+99.100
a) Tính giá trị biểu thức A
b) Dựa vào kết quả câu a tính:
B=22+42+62+...+982
b) B = 22 + 42 + 62 + ... + 982
\(\frac{1}{4}B=1^2+2^2+3^2+...+49^2\)
\(\frac{1}{4}B=1+2\left(1+1\right)+3\left(2+1\right)+...+49\left(48+1\right)\)
\(\frac{1}{4}B=1+2+1.2+2.3+3+...+48.49+49\)
\(\frac{1}{4}B=\left(1+2+3+...+49\right)+\left(1.2+2.3+...+48.49\right)\)
đặt A = 1.2 + 2.3 +...+ 48.49 ta có:
A = 1.2 + 2.3 +...+ 48.49
3A = 1.2.3 + 2.3.( 4 - 1) + ... + 48.49.( 50 - 47 )
3A = 1.2.3 + 2.3.4 - 1.2.3 +...+ 48.49.50 - 47.48.49
3A = 48.49.50
A = \(\frac{48.49.50}{3}=39200\)
thay A = 39200 vào \(\frac{1}{4}B\) ta có:
\(\frac{1}{4}B=\left(1+2+3+...+49\right)+39200\)
\(\frac{1}{4}B=1225+39200\)
\(\frac{1}{4}B=40425\)
B = 40425.4
B = 161700
vậy B = 161700
3A=1.2.3+2.3.4+3.4.3+.......+99.100.3
3A=1.2.(3-0) + 2.3 (4-1) + 3.4 . (5-2)+.......+ 99.100(101-98)
3A=(1.2.3+2.3.4+3.4.5+......+98.99.100)-(0.1.2+1.2.3+.....+98.99.100)
3A=99.100.101-0
3A=999900
A=999900:3
A=333300
tính giá trị biểu thức A = \(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{2016.2017}\)
Ta có \(A=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{2016.2017}\)
\(\Rightarrow A=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\right)\)
\(\Rightarrow A=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...-\frac{1}{2016}+\frac{1}{2017}\right)\)
\(\Rightarrow A=2\left(1-\frac{1}{2017}\right)\)
\(\Rightarrow A=2\left(\frac{2016}{2017}\right)\)
\(\Rightarrow A=\frac{4032}{2017}\)
Ta có:\(\frac{2}{1\cdot2}+\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+....+\frac{2}{2016\cdot2017}\)
\(=\frac{2}{1}-\frac{2}{2}+\frac{2}{2}-\frac{2}{3}+\frac{2}{3}-\frac{2}{4}+....+\frac{2}{2016}-\frac{2}{2017}\)
\(=\frac{2}{1}-\frac{2}{2017}=2-\frac{2}{2017}=\frac{4034}{2017}-\frac{2}{2017}=\frac{4032}{2017}\)
\(A=\frac{2}{1\cdot2}+\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+...+\frac{2}{2016\cdot2017}\)
\(\frac{A}{2}=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2016\cdot2017}\)
\(\frac{A}{2}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)
\(\frac{A}{2}=1-\frac{1}{2017}=\frac{2016}{2017}\)
\(A=\frac{2016}{2017}\cdot2=\frac{4032}{2017}\)
Cho C= 1.2+2.3+3.4+..............................+99.100
a) Tính giá trị biểu thức C
b) Dùng kết quả của câu a , tính giá trị của biểu thức \(D=2^2+4^2+6^2+............................+98^2\)
C=1.2+2.3+...+99.100
3C=1.2.3+2.3.3+...+99.100.3
3C=1.2(3-0)+2.3(4-1)+...+99.100(101-98)
C=99.100.101 phần 3
C=333 300
D=22+42+62+333 300
D=4+16+36+333 300
D=20+36+333 300
D=56+333 300
D=333 356
Tích cho mình hai câu nhà, thank
a) \(C=1.2+2.3+3.4+...+99.100\)
\(\Rightarrow3C=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)\)
\(\Rightarrow3C=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)
\(\Rightarrow3C=99.100.101\)
\(\Rightarrow C=33.100.101\)
\(\Rightarrow C=333300\)
Cho C=1.2+2.3+3.4+...+99.100
a)Tính giá trị biểu thức của C
b)Dùng kết quả của câu a,tình giá trị biểu thức D=22+42+62+...+982
a) C = 1.2 + 3.4 + 4.5 +...+ 99.100
\(\Rightarrow\) C = 1.2+2.3+3.4+4.5+...+99.100
\(\Rightarrow\)3C = 1.2.3+2.3.3+3.4.3+4.5.3+...+99.100.3
\(\Rightarrow\)3C = 1.2.3+2.3.(4-1)+3.4.(5-2)+4.5.(6-3)+...+99.100.(101-98)
\(\Rightarrow\)3C = 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+...+99.100.101-98.99.100
\(\Rightarrow\)3C = 1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-3.4.5+4.5.6-4.5.6+...+99.100.101
\(\Rightarrow\)3C = 99.100.101
\(\Rightarrow C=33.100.101\)
\(\Rightarrow C=333300\)
b) D = 2 + 4 + 6 + 333 300
\(\Rightarrow\)D = 4 + 16 + 36 + 333 300
\(\Rightarrow\)D = 20 + 36 + 333 300
\(\Rightarrow\)D = 56 + 333 300
\(\Rightarrow\)D = 333 356
a, C = 1.2 + 2.3 + 3.4 + ... + 99.100
3C = 1.2.3 + 2.3.3 + 3.4.3 + .... + 99.100.3
3C = 1.2.3 + 2.3\((4-1)\)+ 3.4\((5-2)+...\)+ 99.100\((101-98)\)
3C = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100
3C = 99.100.101
C = 99.100.101 :3
C = 333300
Câu b tự làm
P/S : Hoq chắc :>