tìm x
1/ 1x2 + 1/2x3 +1/3x4 + ....+ 1/xnhân(x+1 ) = 2013/2014
1/1x2+1/2x3=1/3x4+...+1/n(n+1)=2013/2014
tìm n
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}=\frac{2013}{2014}\)
\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}=\frac{2013}{2014}\)
\(\Rightarrow1-\frac{1}{n+1}=\frac{2013}{2014}\)
\(\Rightarrow\frac{1}{n+1}=1-\frac{2013}{2014}\)
\(\Rightarrow\frac{1}{n+1}=\frac{1}{2014}\)
\(\Rightarrow n+1=2014\)
\(\Rightarrow n=2014-1\)
\(\Rightarrow n=2013\)
1/1x2+1/2x3+1/3x4+1/24x25
1/1x2+ 1/2x3+1/3x4+1/24x25
\(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+....+\dfrac{1}{24\times25}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{24}-\dfrac{1}{25}\)
\(=1-\dfrac{1}{25}\)
\(=\dfrac{24}{25}\)
Tìm y biết:
a) (y+2):5-5x5=378
b) (7,56x0,99+7,56x0,01)x(y+2)=18,9
c) (y+\(\frac{1}{1x2}\))+(y+\(\frac{1}{2x3}\))+(y+\(\frac{1}{3x4}\))+...+(y+\(\frac{1}{2013x2014}\))=\(\frac{2013}{2014}\)
a)(y+2):5-5x5=378
(y+2):5-25=378
(y+2):5=378+25
(y+2):5=403
(y+2)=403x5
y+2=2015
y=2015-2
y=2013
(y+2):5-5.5=378
(y+2):5-25=378
(y+20)=378+25
(y+2)=403
(y+2)=403.5
y+2=2015
y=2015-2
y=2013
a) \(\left(y+2\right):5-5.5=378\)
\(\left(y+2\right):5-25=378\)
\(\left(y+2\right):5=378+25\)
\(\left(y+2\right):5=403\)
\(y+2=403.5\)
\(y+2=2015\)
\(y=2015-2\)
\(y=2013\)
Tìm x biết 1/1x2 + 1/2x3 + 1/3x4 + ... + 1/X(X+1) = 99/100
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{x\left(x+1\right)}=\frac{99}{100}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{x}-\frac{1}{x+1}=\frac{99}{100}\)
\(1-\frac{1}{x+1}=\frac{99}{100}\)
=> \(\frac{1}{x+1}=1-\frac{99}{100}=\frac{1}{100}\)
=> x+1 = 100
=> x = 100 - 1
=> x = 99
Tìm X:
1:1x2+1:2x3+1:3x4+....+1: (X-1)x X=15:16
Chú ý : dấu chia là phân số
\(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+...+\dfrac{1}{\left(x-1\right)\times x}=\dfrac{15}{16}\)
\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x-1}-\dfrac{1}{x}=\dfrac{15}{16}\)
\(1-\dfrac{1}{x}=\dfrac{15}{16}\)
\(\dfrac{1}{x}=1-\dfrac{15}{16}=\dfrac{16}{16}-\dfrac{15}{16}\)
\(\dfrac{1}{x}=\dfrac{1}{16}\)
\(\Rightarrow x=16\)
tìm x biết
a, (1/1x2+1/2x3+1/5x4+...+1/99x100) X=1/1x2+2x3+3x4+...+98x99
b, X/1x3+X/3x5+X/5x7+...+X/2013x2015=4/2015
c, X+1/2015+X+2/2016=X+3/2017+X+4/2018
b) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2013.2015}\)
\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2013.2015}\right)\)
\(=\frac{1}{2}\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{2015-2013}{2013.2015}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{2015}\right)=\frac{1007}{2015}\)
Phương trình tương đương với:
\(\frac{1007X}{2015}=\frac{4}{2015}\Leftrightarrow X=\frac{4}{1007}\)
c) \(\frac{x+1}{2015}+\frac{x+2}{2016}=\frac{x+3}{2017}+\frac{x+4}{2018}\)
\(\Leftrightarrow\frac{x+1}{2015}-1+\frac{x+2}{2016}-1=\frac{x+3}{2017}-1+\frac{x+4}{2018}-1\)
\(\Leftrightarrow\frac{x-2014}{2015}+\frac{x-2014}{2016}=\frac{x-2014}{2017}+\frac{x-2014}{2018}\)
\(\Leftrightarrow x-2014=0\)
\(\Leftrightarrow x=2014\)
1/1x2 + 1/2x3 + 1/3x4 + ... 1/99 x 100
1/1.2 +1/2.3 +1/3.4 +....+1/99.100
=1-1/2+1/2-1/3+1/3-14+.....+1/99-1/100
=1-1/100
=99/100
tham khảo
1/1.2 +1/2.3 +1/3.4 +....+1/99.100
=1-1/2+1/2-1/3+1/3-14+.....+1/99-1/100
=1-1/100
=99/100
Tìm x biết:
\(\dfrac{x}{x+1}=\dfrac{1}{1x2}+\dfrac{1}{2x3}+\dfrac{1}{3x4}+...+\dfrac{1}{31x32}\)
Trả lời nhanh giúp mìn nhé
`x/(x+1)=1/(1xx2)+1/(2xx3)+1/(3xx4)+...+1/(31xx32)`
`=>x/(x+1)=1-1/2+1/2-1/3+1/3-1/4+...+1/31-1/32`
`=>x/(x+1)=1-1/32`
`=>x/(x+1)=31/32`
`=>32x=31(x+1)`
`=>32x=31x+31`
`=>32x-31x=31`
`=>x=31`
1/(1x2)+1/(2x3)+1/(3x4)...+1/xx(x+1)
Ta có : A = \(\frac{1}{1\text{x}2}+\frac{1}{2\text{x}3}+\frac{1}{3\text{x}4}+...+\frac{1}{X\text{x}\left(X+1\right)}\)
A = \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\)
A = \(\frac{1}{1}-\frac{1}{x+1}\)
A = \(\frac{x}{x+1}\)
Ủng hộ mik nhá !!!!
Ta có:
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}=?\)
\(\Rightarrow\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=?\)
\(\Rightarrow\frac{1}{1}-\frac{1}{x+1}=?\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{1}-?\)
\(\Rightarrow x+1=?\Leftrightarrow x=?\)