Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc
Xem chi tiết
Anh Quân Dương
Xem chi tiết
ST
11 tháng 3 2018 lúc 8:53

a, \(\frac{a^2+a+3}{a+1}=\frac{a\left(a+1\right)+3}{a+1}=1+\frac{3}{a+1}\)

Để \(\frac{a^2+a+3}{a+1}\inℤ\) thì \(a+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

Ta có bảng:

a+11-13-3
a0-22-4

Vậy....

b, x - 2xy + y = 0

<=> 2x - 4xy + 2y = 0

<=> 2x(1 - 2y) + 2y - 1 = -1

<=> 2x(1 - 2y) - (1 - 2y) = -1

<=> (2x - 1)(1 - 2y) = -1

ta có bảng:

2x-11-1
1-2y-11
x10
y10

Vậy...

Võ Lan Nhi
Xem chi tiết
Thắng Nguyễn
23 tháng 12 2016 lúc 17:14

a)\(\frac{a^2+a+3}{a+1}=\frac{a\left(a+1\right)+3}{a+1}=\frac{a\left(a+1\right)}{a+1}+\frac{3}{a+1}=a+\frac{3}{a+1}\in Z\)

\(\Rightarrow3⋮a+1\)

\(\Rightarrow a+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

\(\Rightarrow a\in\left\{0;-2;2;-4\right\}\)

b) Phần 1

\(x-2xy+y=0\)

\(\Rightarrow2x-4xy+2y=0\)

\(\Rightarrow2x-4xy+2y-1=-1\)

\(\Rightarrow2x\left(1-2y\right)-\left(1-2y\right)=-1\)

\(\Rightarrow\left(2x-1\right)\left(1-2y\right)=-1\)

Lập bảng xét Ư(-1)={1;-1}

Phần 2:

\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)

\(\Leftrightarrow\frac{x}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)

\(\Leftrightarrow\frac{x+y+z+t}{y+z+t}=\frac{y+z+t+x}{z+t+x}=\frac{z+t+x+y}{t+x+y}=\frac{t+x+y+z}{x+y+z}\)

+)XÉt \(x+y+z+t\ne0\) suy ra \(x=y=z=t\), Khi đó \(P=1+1+1+1=4\)

+)Xét \(x+y+z+t=0\) suy ra x+y=-(z+t); y+z=-(t+x); (z+t)=-(x+y); (t+x)=-(y+z)

Khi đó \(P=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

Vậy P có giá trị nguyên 

Nguyen Thu Huyen
Xem chi tiết
Bùng nổ Saiya
Xem chi tiết
VRCT_Ran Love Shinichi
8 tháng 6 2017 lúc 9:02

b) x - 2xy + y = 0 

<=> 2x - 4xy + 2y = 0 

<=> 2x - 4xy + 2y - 1 = -1 

<=> (2x - 4xy) - (1 - 2y) = -1 

<=> 2x(1 - 2y) - (1 - 2y) = -1 

<=> (2x - 1)(1 - 2y) = - 1 

<=> 2x - 1 = -1 và 1 - 2y = 1 

hoặc 2x - 1 = 1 và 1 - 2y = -1

Bùi Thị Hằng Trang
Xem chi tiết
Phạm Minh
Xem chi tiết
Phạm Minh
16 tháng 6 2020 lúc 20:40

Ai giúp em với ạ

Khách vãng lai đã xóa
Nguyễn Linh Chi
16 tháng 6 2020 lúc 21:06

1. Ta có: \(x^2-2xy-x+y+3=0\)

<=> \(x^2-2xy-2.x.\frac{1}{2}+2.y.\frac{1}{2}+\frac{1}{4}+y^2-y^2-\frac{1}{4}+3=0\)

<=> \(\left(x-y-\frac{1}{2}\right)^2-y^2=-\frac{11}{4}\)

<=> \(\left(x-2y-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=-\frac{11}{4}\)

<=> \(\left(2x-4y-1\right)\left(2x-1\right)=-11\)

Th1: \(\hept{\begin{cases}2x-4y-1=11\\2x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}\)

Th2: \(\hept{\begin{cases}2x-4y-1=-11\\2x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)

Th3: \(\hept{\begin{cases}2x-4y-1=1\\2x-1=-11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)

Th4: \(\hept{\begin{cases}2x-4y-1=-1\\2x-1=11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)

Kết luận:...

Khách vãng lai đã xóa
Nguyễn Linh Chi
16 tháng 6 2020 lúc 21:12

2. \(y^2+1\ge1>0;2x^2+x+1>0\) với mọi x; y 

=> x + 5 > 0 

=>  \(y^2+1=\frac{x+5}{2x^2+x+1}\ge1\)

<=> \(x+5\ge2x^2+x+1\)

<=> \(x^2\le2\)

Vì x nguyên => x = 0 ; x = 1; x = -1 

Với x = 0 ta có: \(y^2+1=5\Leftrightarrow y=\pm2\)

Với x = 1 ta có: \(y^2+1=\frac{3}{2}\)loại vì y nguyên 

Với x = -1 ta có: \(y^2+1=2\Leftrightarrow y=\pm1\)

Vậy Phương trình có 4 nghiệm:...

Khách vãng lai đã xóa
minh hue
Xem chi tiết
minh hue
12 tháng 11 2023 lúc 13:02

Thanks

 

Kiều Vũ Linh
12 tháng 11 2023 lúc 13:02

Bài 1

a) (x + 3)(x + 2) = 0

x + 3 = 0 hoặc x + 2 = 0

*) x + 3 = 0

x = 0 - 3

x = -3 (nhận)

*) x + 2 = 0

x = 0 - 2

x = -2 (nhận)

Vậy x = -3; x = -2

b) (7 - x)³ = -8

(7 - x)³ = (-2)³

7 - x = -2

x = 7 + 2

x = 9 (nhận)

Vậy x = 9

Kiều Vũ Linh
12 tháng 11 2023 lúc 13:07

Bài 3

20a + 10b = 2010

10b = 2010 - 20a

b = (2010 - 20a) : 10

*) a = 0

b = (2010 - 20.0) : 10 = 201

*) a = 1

b = (2010 - 10.1) : 10 = 200

*) a = 2

b = (2010 - 10.2) : 10 = 199

Vậy ta có ba cặp số nguyên (a; b) thỏa mãn:

(0; 201); (1; 200); (2; 199)

Lê Huyền Trang
Xem chi tiết