Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hồng Quân
Xem chi tiết
Nguyễn Mạnh Cường
Xem chi tiết
tôi yêu các bạn
24 tháng 7 2015 lúc 21:32

ví dụ 1 bài 2x-x2

bài giải: -(x2+2x)

=-(x2-2x)

=-(x2-2x.5/2 +25/4 - 25/4)

=-(x-5/2)-25/4<25/4

=25/4+(x-5/2)<25

=>x=5/2

 

Nguyễn Hồng Quân
7 tháng 3 2018 lúc 21:52

Tìm GTLN của biểu thức: a,A= (21|4x+6| + 33)/(3|4x+6|+5)

Nguyễn Mạnh Cường
Xem chi tiết
Nguyễn Thu Hằng
Xem chi tiết
Nguyễn Quốc Khánh
Xem chi tiết
Nguyễn Linh Chi
18 tháng 12 2019 lúc 16:51

Ta có:

 \(A=\frac{4x+5}{x^2+2x+6}=\frac{x^2+2x+6-x^2-2x-6+4x+5}{x^2+2x+6}\)

\(=\frac{\left(x^2+2x+6\right)-x^2+2x-1}{x^2+2x+6}=1-\frac{\left(x-1\right)^2}{x^2+2x+6}\le1\)

=> max A = 1 tại x = 1

\(A=\frac{4x+5}{x^2+2x+6}=\frac{-\frac{4}{5}\left(x^2+2x+6\right)+\frac{4}{5}\left(x^2+2x+6\right)+4x+5}{x^2+2x+6}\)

\(=-\frac{4}{5}+\frac{4x^2+28x+49}{5\left(x^2+2x+6\right)}=-\frac{4}{5}+\frac{\left(2x+7\right)^2}{5\left(x^2+2x+6\right)}\ge-\frac{4}{5}\)

=> min A = -4/5 <=> 2x + 7 = 0 <=> x = -7/2

Vậy...

Khách vãng lai đã xóa
Đặng Quốc Vũ
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 10 2021 lúc 22:14

a: \(A=-4x^2+4x-1\)

\(=-\left(4x^2-4x+1\right)\)

\(=-\left(2x-1\right)^2\le0\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

b: \(B=-x^2+5x\)

\(=-\left(x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}\right)+\dfrac{25}{4}\)

\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)

Lấp La Lấp Lánh
10 tháng 10 2021 lúc 22:15

a) \(A=-4x^2+4x-1=-\left(4x^2-4x+1\right)\)

\(=-\left(2x-1\right)^2\le0\)

\(maxA=0\Leftrightarrow x=\dfrac{1}{2}\)

b) \(B=-x^2+5x=-\left(x^2-5x+\dfrac{25}{4}\right)+\dfrac{25}{4}\)

\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\)

\(maxB=\dfrac{25}{4}\Leftrightarrow x=\dfrac{5}{2}\)

c) \(C=-3x^2-9x+6=-3\left(x^2+3x+\dfrac{9}{4}\right)+\dfrac{51}{4}\)

\(=-3\left(x+\dfrac{3}{2}\right)^2+\dfrac{51}{4}\le\dfrac{51}{4}\)

\(maxC=\dfrac{51}{4}\Leftrightarrow x=-\dfrac{3}{2}\)

Võ Hoàng Tiên
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
2 tháng 7 2017 lúc 11:22

Ta có : C = 4x2 + 25y2 - 4x + 30y 

=> C = 4x2 - 4x + 25y2 + 30y

=> C = (4x2 - 4x + 1) + (25y2 + 30y + 9) - 10

=> C = (2x - 1)2 + (5y + 3)2 - 10 

Mà \(\left(2x-1\right)^2;\left(5y+3\right)^2\ge0\forall x\)

Nên C =  (2x - 1)2 + (5y + 3)2 - 10 \(\ge-10\forall x\)

Vậy giá trị nhỏ nhất của C là -10 tại x = \(\frac{1}{2}\) và y = \(-\frac{3}{5}\)

Dung Đào
2 tháng 7 2017 lúc 11:27

Ta có:

4x^2+25y^2-4x+30y

=(4x^2-4x+1)+(25y^2+30y+9)-10

=(2x-1)^2+(5y+3)^2-10

Vì (2x-1)^2>=0 với mọi x; (5y+3)^2>=0 với mọi y

=>(2x-1)^2+(5y+3)^2>=0 với mọi x,y

=>(2x-1)^2+(5y+3)^2-10>=-10 với mọi x,y

Dấu "=" xảy ra <=>2x-1=0 và 5y+3=0

<=>x=1/2 và y=-3/5

Thắng Nguyễn
2 tháng 7 2017 lúc 11:36

\(C=4x^2+25y^2-4x+30y\)

\(=4x^2-4x+1-1+25y^2+30y+9-9\)

\(=\left(2x-1\right)^2+\left(5y+3\right)^2-10\)

Dễ thấy: \(\hept{\begin{cases}\left(2x-1\right)^2\ge0\\\left(5y+3\right)^2\ge0\end{cases}}\)

\(\Rightarrow\left(2x-1\right)^2+\left(5y+3\right)^2\ge0\)

\(\Rightarrow\left(2x-1\right)^2+\left(5y+3\right)^2-10\ge-10\)

Xảy ra khi \(\hept{\begin{cases}\left(2x-1\right)^2=0\\\left(5y+3\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-\frac{3}{5}\end{cases}}\)

Võ Hồng Vân
Xem chi tiết
Thanh Trần Là Tớ
12 tháng 1 2016 lúc 21:45

sai  đề hay sao ý phải là GTNN hay sao ý

Trần Nam Khánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 8 2021 lúc 21:33

a:Ta có: \(A=-4x^2+x-1\)

\(=-4\left(x^2-\dfrac{1}{4}x+\dfrac{1}{4}\right)\)

\(=-4\left(x^2-2\cdot x\cdot\dfrac{1}{8}+\dfrac{1}{64}+\dfrac{63}{64}\right)\)

\(=-4\left(x-\dfrac{1}{8}\right)^2-\dfrac{63}{16}\le-\dfrac{63}{16}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{8}\)

b: Ta có: \(B=-3x^2+5x+6\)

\(=-3\left(x^2-\dfrac{5}{3}x-2\right)\)

\(=-3\left(x^2-2\cdot x\cdot\dfrac{5}{6}+\dfrac{25}{36}-\dfrac{97}{36}\right)\)

\(=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{12}\le\dfrac{97}{12}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{5}{6}\)

c: Ta có: \(C=-x^2+3x+4\)

\(=-\left(x^2-3x-4\right)\)

\(=-\left(x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{25}{4}\right)\)

\(=-\left(x-\dfrac{3}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{3}{2}\)