cho tam giác abc cân tại a . kẻ ch vuông góc ab. biết bh=3;hc=6 tính ah
mai mình thi rùi bài này khó quá mình không giải được mong mọi người giải dùm
mình tick cho giải xong nhớ kết bạn nhé
ok
Bài 1: Cho tam giác ABC cân tại B, kẻ CH vuông góc AB. Biết AH= 1cm, BH= 4cm. Tính độ dài AC.
Bài 2: Cho tam giác ABC vuông tại A. Cạnh AB= 5cm đường cao AH, BH= 3cm, CH= 8cm. Tính AC.
Bài 3: Cho tam giác ABC vuông tại A, có \(\frac{AB}{BC}=\frac{3}{5}\)và AC= 16cm. Tính độ dài các cạnh AB=BC.
Bài 1: (bạn tự vẽ hình vì hình cũng dễ)
Ta có: AB = AH + BH = 1 + 4 = 5 (cm)
Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)
Xét tam giác BCH vuông tại H có:
\(HB^2+CH^2=BC^2\left(pytago\right)\)
\(4^2+CH^2=5^2\)
\(16+CH^2=25\)
\(\Rightarrow CH^2=25-16=9\)
\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)
Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé
Bài 2: Sử dụng pytago với tam giác ABH => AH
Sử dụng pytago với ACH => AC
Cho tam giác ABC cân tại A kẻ BH vuông góc với Ac kẻ CK vuông góc với AB a) chứng minh tam giác AHK là tam giác cân
Do \(\Delta ABC\) cân tại A \(\Rightarrow\widehat{BCA}=\widehat{CBA}\) hay \(\widehat{BCH}=\widehat{CBA}\)
Xét hai tam giác vuông BHC và CKB có:
\(\left\{{}\begin{matrix}BC\text{ chung}\\\widehat{BCH}=\widehat{CBK}\end{matrix}\right.\) \(\Rightarrow\Delta_VBHC=\Delta_VCKB\left(ch-gn\right)\)
\(\Rightarrow CH=BK\) (1)
Mà \(\Delta ABC\) cân tại A \(\Rightarrow AB=AC\)
\(\Rightarrow AK+BK=AH+CH\) (2)
(1);(2) \(\Rightarrow AK=AH\)
\(\Rightarrow\Delta AHK\) cân tại A
Do cân tại A hay
Xét hai tam giác vuông BHC và CKB có:
(1)
Mà cân tại A
(2)
(1);(2)
cân tại A
Cho tam giác ABC cân tại B, kẻ CH vuông góc AB. Biết AH= 1cm, BH= 4cm. Tính độ dài AC.
Cho tam giác ABC cân tại B, kẻ CH vuông góc AB. Biết AH= 1cm, BH= 4cm. Tính độ dài AC
BA= AH+HB=1+4=5 (cm)
Mà tam giác ABC cân tại B => BA=BC=5 (cm)
Cho tam giác ABC cân tại B, kẻ CH vuông góc AB. Biết AH= 1cm, BH= 4cm. Tính độ dài AC.
Cho tam giác ABC cân tại B, kẻ CH vuông góc AB. Biết AH= 1cm, BH=4cm. Tính độ dài AC
Tự kẻ hình nha !!!
Ta có :
BA = 4
mà BA = BH + HA
Đồng thời HA = 1
=> BH = 3
Vì tam giác ABC cân tại B
=> BA = BC = 4
Theo định lý Py-ta-go ta có :
BC2 = BH2 + HC2
42 = 32 + HC2
16 = 9 + HC2
HC2 = 7
=> \(HC=\sqrt{7}\)
Ta áp dụng định lý Py-ta-go vào tam giác vuông HAC có :
AC2 = HA2 + HC2
AC2 = 12 + \(\sqrt{7}^2\)
AC2 = 1 + 7
AC2 = 8
\(\Rightarrow AC=\sqrt{8}\)
cho tam giác ABC cân tại A, góc A nhọn. kẻ BH vuông góc AC tại H, kẻ CK vuông góc AB tại K. gọi D là giao điểm của BH và CK.
a) cmr BH=CK,
2) cmr tam giác DBC cân
3) qua D kẻ đường thẳng cắt đoạn thẳng BK tại E và cắt đoạn Thẳng CH tại F sao cho AE<À. Cmr: DE,DF
+ Cho tam giác ABC vuông tại A (AB > AC), kẻ đường cao AH. a) Tính các cạnh và các góc của tam giác ABC biết BH = 9cm, CH = 4cm. b) Vẽ AD là tia phân giác của góc BAH, D thuộc BH. Chứng minh tam giác ACD cân. c) Chứng minh HD.BC = DB.AC. d) Gọi M là trung điểm của AB, E là giao điểm của hai đường thẳng MD và AH. Chứng minh CE // AD
Cho tam giác ABC vuông tại A (AB > AC), kẻ đường cao AH. a) Tính các cạnh và các góc của tam giác ABC biết BH = 9cm, CH = 4cm. b) Vẽ AD là tia phân giác của góc BAH, D thuộc BH. Chứng minh tam giác ACD cân. c) Chứng minh HD.BC = DB.AC. d) Gọi M là trung điểm của AB, E là giao điểm của hai đường thẳng MD và AH. Chứng minh CE // AD
a: BC=13cm
\(AB=3\sqrt{13}\left(cm\right)\)
\(AC=2\sqrt{13}\left(cm\right)\)
Cho tam giác ABC cân tại A ( AB = AC ) , kẻ BH vuông góc với AC tại H . Biết AH = 7cm ,HC = 2 cm . Tính độ dài đáy BC của tam giác cân ABC
Ta có: AC = AH + HC = 7 + 2 = 9 (cm)
Vì AB = AC => AB = 9 cm
Áp dụng định lí Pi - ta - go vào t/giác AHB vuông tại H, ta có:
AB2 = AH2 + BH2
=> BH2 = AB2 - AH2 = 92 - 72 = 32
Áp dụng định lí Pi - ta - go vào t/giác AHC vuông tại H, ta có:
BC2 = BH2 + HC2 = 32 + 22 = 36
=> BC = 6 (cm)