Tính bằng 2 cách:
(2/3x4/5)x5/6.
a, (2/3x4/5)x5/6
b,(1/2+1/3)x1/5
Tính bằng hai cách
a, = 8/15 x 5/6 = 40/90 = 4/9
b, = 5/6 x 1/5 = 5/30 = 1/6
a, \(= 8/15 x 5/6 = 40/90 = 4/9\)
b, \(= 5/6 x 1/5 = 5/30 = 1/6\)
tính bằng hai cách
a) (2/3 x 4/5)x5/6 =
b)(1/2+1/3)x1/5=
Bài 2: Cho hai đa thức: a(x) = x5- 2x3+ 3x4 - 9x2+11x -6
b(x) = 3x4+ x5 - 2(x3 + 4 ) - 10x2 + 9x
a. Tính c(x) = a(x)- b(x)
b. Tìm x để c(x) = 2x+2
c. Chứng tỏ rằng c(x) không thể nhận thêm giá trị bằng 2012 với mọi x∈Z.
(2/3x4/5)x5/6
(4/5+5/4)x3/4
11/23+2/23+9/23+18/23
27/12+17/6-25/36-15/6
thuận tiện nhất
\(a.=\left(\dfrac{4}{5}.\dfrac{5}{6}\right).\dfrac{2}{3}=\dfrac{4}{6}.\dfrac{2}{3}=\dfrac{4}{9}\)
\(b.\dfrac{4}{5}.\dfrac{3}{4}+\dfrac{5}{4}.\dfrac{3}{4}=\dfrac{3}{5}+\dfrac{15}{16}=\dfrac{123}{80}\)
\(c.\left(\dfrac{11}{23}+\dfrac{9}{23}\right)+\left(\dfrac{2}{23}+\dfrac{18}{23}\right)=\dfrac{20}{23}+\dfrac{20}{23}=\dfrac{40}{23}\)
\(d.\left(\dfrac{27}{12}-\dfrac{25}{36}\right)+\left(\dfrac{17}{6}-\dfrac{15}{6}\right)=\dfrac{14}{9}+\dfrac{1}{3}=\dfrac{17}{9}\)
tính bằng cách thuận tiện
2/3 x 3/4 x4/5 x5/6
Cho hai đa thức: A(x)=x5-2x3 3x4-9x2 11x-6.
B(x)=3x4 x5-2(x3 4)-10x 9x.
a, Tìm đa thức C(x) sao cho C(x) B(x)=A(x).
b, Tìm x để C(x)=2x 2.
c, Với x nguyên đa thức C(x) có thể nhận giá trị bằng 2012 được không? Tại sao?
Cho x + 3 = 2. Tính giá trị của biểu thức H = x5 – 3x4 + 6x2 – 20x + 2024
A. H = 2019
B. H = 2018
C. H = 2020
D. H = 2023
Chứng minh rằng phương trình x 5 – 3 x 4 + 5 x – 2 = 0 có ít nhất ba nghiệm nằm trong khoảng - 2 ; 5
Đặt f(x) = x5 – 3x4 + 5x – 2
f(x) là hàm đa thức nên liên tục trên R.
Ta có: f(0) = –2 < 0
f(1) = 1 > 0
f(2) = -8 < 0
f(3) = 13 > 0
⇒ f(0).f(1) < 0; f(1).f(2) < 0; f(2).f(3) < 0
⇒ Phương trình f(x) = 0 có ít nhất 1 nghiệm thuộc khoảng (0; 1); 1 nghiệm thuộc khoảng (1; 2); 1 nghiệm thuộc khoảng (2; 3)
⇒ f(x) = 0 có ít nhất 3 nghiệm thuộc (0; 3) hay f(x) = 0 có ít nhất 3 nghiệm thuộc (-2; 5).
2x2x2x2+3x4-2:2 x5=