chứng minh rằng
Nếu a/b là phân số tối giản thì a+b/b cũng là phân số tối giản
cho a/b là phân số tối giản. chứng minh rằng a-2b/b cũng là phân số tối giản
\(\frac{a-2b}{b}=\frac{a-b+b}{b}=\frac{a}{b}\)là phân số tối giản.
Thế thôi ! Bạn chỉ cần tách tử số là ra luôn !^^
Cho phân số a/b là phân số tối giản.
Chứng minh rằng: a - 2b/a cũng là phân số tối giản.
Cho a/b là phân số tối giản. Chứng minh rằng a+3b/b cũng là phân số tối giản Ai giải đầy đủ mình tick cho
Chứng minh rằng nếu phân số \(\frac{a}{b}\)là tối giản thì phân số \(\frac{a+b}{b}\)cũng tối giản.
Gọi d là ƯCLN (a,a+b) và d thuộc N*
=> a+b chia hết cho d ; b chia hết cho d
=> a chia hết cho d ; b chia hết cho d
Mà phân số a/b tối giản =>d = 1
=> ƯCLN(a,a+b)=1
=> Phân số a/a+b tối giản
Ta có
\(\dfrac{a+b}{b}=1+\dfrac{a}{b}=1\dfrac{a}{b}\)
Vì \(\dfrac{a}{b}\)là phân số tối giản nên \(1\dfrac{a}{b}\)là phân số tối giản
Vậy\(\dfrac{a+b}{b}\)là phân số tối giản
Chứng tỏ rằng nếu phân số \(\frac{a}{b}\)là phân số tối giản thì phân số \(\frac{a+b}{b}\)cũng là phân số tối giản.
Giả sử \(\frac{a+b}{b}\) không là phân số tối giản
Gọi ƯCLN của a+b;a là d ( d khác 1 )
Khi đó:\(a+b⋮d;b⋮d\)
\(\Rightarrow\left(a+b\right)-b⋮d\)
\(\Rightarrow a⋮d\) mà b chia hết cho d suy ra \(\frac{a}{b}\) không tối giản ( vô lý )
Vậy ta có đpcm
Cho \(\frac{a}{b}\) là phân số tối giản. Chứng minh rawngg:\(\frac{a-2b}{b}\) cũng là phân số tối giản.
Chứng tỏ rằng nếu phân số \(\frac{a}{b}\) là tối giản thì phân số \(\frac{a+b}{b}\) cũng tối giản. Suy ra \(\frac{246913579}{123456790}\) là tối giản.
làm sao làm sao, gấp lắm, sắp nộp rùi
Google để chơi à
Lên Google Search tìm xong
Không có mới đăng lên
a, Chứng minh rằng với mọi số tự nhiên n thì \(\dfrac{n+1}{2n+3}\) là phân số tối giản
b, Chứng minh rằng với mọi số tự nhiên a, b thì \(\dfrac{7a+5b}{9a+4b}\) là phân số tối giản
a/
Gọi $d=ƯCLN(n+1, 2n+3)$
$\Rightarrow n+1\vdots d; 2n+3\vdots d$
$\Rightarrow 2n+3-2(n+1)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$
b/
Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé.
Bạn xem lại đề.
cho phân số tối giản a/b chứng minh b-a/b cũng tối giản
Bài giải
Ta có: \(\frac{a}{b}\)(a, b \(\inℕ^∗\)) là phân số tối giản
Suy ra ƯCLN (a, b) = 1
Gọi ƯCLN (a, b) là d
Ta có: a \(⋮\)d; b\(⋮\)d; d = 1
Suy ra b - a \(⋮\)d và b \(⋮\)d
Mà d = 1 (d là ƯCLN (a, b)
Nên \(\frac{b-a}{b}\)cũng là phân số tối giản.
Vậy...