Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
marivan2016
Xem chi tiết
Ý_Kiến_Gì
21 tháng 9 2016 lúc 21:05

a) vì y+z+1/x = x+z+2/y = x+y-3/z = 1/x+y+z

=>

y+z+1/x = x+z+2/y = x+y-3=y+z+1+x+z+2+x+y-3/x+y+z = 2x+2y+2z/x+y+z = 2

=> 2 = 1/ x+y+z => x+y+z=1/2

sau đó áp dụng tính chất dãy tỉ số = hau

Nguyễn Xuân Yến Nhi
Xem chi tiết
Nguyễn Huy Tú
29 tháng 9 2016 lúc 13:41

Đăng từng bài thôi chứ bạn

Họ Phạm
29 tháng 9 2016 lúc 15:57

mk lm nha

 

Nguyễn Thị Quỳnh Anh
18 tháng 1 2017 lúc 20:28

1.

a)Ta có: 3.x=y.7

3x chia hết cho 7 mà 3 và 7 là số nguyên tố cùng nhau

suy ra: x chia hết cho 2 hay x=2k (k thuộc tập hợp số nguyên)

7y chia hết cho 3 mà 7 và 3 là số nguyên tố cùng nhau

suy ra: y chia hết cho 3 hay y=7k (k thuộc tập hợp số nguyên)

(y khác 0 nên k khác 0)

vậy: x=2.k

y=5.k

(k thuộc tập hợp Z và k khác 0)

Nguyễn Thị Mai Anh
Xem chi tiết
Nguyễn Phương Quỳnh Chi
Xem chi tiết
Lê Diệu Linh
Xem chi tiết
Lê Diệu Linh
25 tháng 10 2017 lúc 20:27

Mình chỉ cần các bạn trả lời 4 câu nhanh nhất mình sẽ k.

Rose Hạ Vy
30 tháng 7 2019 lúc 9:10

a)x-3/x+5=5/7 suy ra 7.(x-3) = 5(x+5)

Tương đương : 7x - 21 = 5x + 25

                          7x - 5x = 25 + 21 = 46

                          2x = 46 suy ra : x = 46/2 = 23

 Vậy x = 23

Nguyễn Nhật
19 tháng 2 2021 lúc 21:54

1234231

 

Minh Hau
Xem chi tiết
Nguyễn Trúc Vy
Xem chi tiết
Ga
31 tháng 8 2021 lúc 19:21

\(a.\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\) và \(2x+3y-z=186\)

Từ \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{3}\times\frac{1}{5}=\frac{y}{4}\times\frac{1}{5}=\frac{x}{15}=\frac{y}{20}\left(1\right)\)

Từ \(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}\times\frac{1}{4}=\frac{z}{7}\times\frac{1}{4}=\frac{y}{20}=\frac{z}{28}\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Đặt \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=k\)

\(\Rightarrow\hept{\begin{cases}x=15k\\y=20k\\z=28k\end{cases}}\)

Lại có : \(2x+3y-z=186\)

Thay vào ta có :

\(2.15k+3.20k-28k=186\)

\(30k+60k-28k=186\)

\(62k=186\)

\(k=3\)

Thay vào ta được :

\(\Rightarrow\hept{\begin{cases}x=15.3=45\\y=20.3=60\\z=28.3=84\end{cases}}\)

Vậy .....

Khách vãng lai đã xóa
789 456
25 tháng 4 lúc 13:57

1) Tìm x, biết:

a) x:2=y:5 và x+y=21

b) x2=y2𝑥2=𝑦2và x.y=54

c) x:7=y:5 và y-x=12

2) Tím các số x, y, z, biết:

a) x10=y6=z21𝑥10=𝑦6=𝑧21và 5x+y-2z=28

b) x3=y4𝑥3=𝑦4y5=z7𝑦5=𝑧7và 2x+3y-z=124

c) 3x=2y; 7y=5z và x-y+z=32

d) 2x=3x=5z và x+y-z=95

789 456
25 tháng 4 lúc 13:57

Để giải các bài toán này:

1a) \( \frac{x}{2} = \frac{y}{5} \) và \( x + y = 21 \)

Từ phương trình thứ nhất, ta có \( x = \frac{2y}{5} \). Thay vào phương trình thứ hai:
\[ \frac{2y}{5} + y = 21 \]
\[ \frac{7y}{5} = 21 \]
\[ 7y = 105 \]
\[ y = 15 \]

Thay \( y = 15 \) vào \( x + y = 21 \):
\[ x + 15 = 21 \]
\[ x = 6 \]

Vậy, \( x = 6 \).

1b) \( \frac{x^2}{2^2} = \frac{y^2}{2^2} \) và \( x \cdot y = 54 \)

Từ phương trình thứ nhất:
\[ x^2 = y^2 \]

Đặt \( x = y \) ta có:
\[ x^2 = 54 \]
\[ x = \sqrt{54} \]
\[ x = 3\sqrt{6} \]

Vậy, \( x = 3\sqrt{6} \).

1c) \( \frac{x}{7} = \frac{y}{5} \) và \( y - x = 12 \)

Từ phương trình thứ nhất, ta có \( x = \frac{7y}{5} \). Thay vào phương trình thứ hai:
\[ y - \frac{7y}{5} = 12 \]
\[ \frac{5y}{5} - \frac{7y}{5} = 12 \]
\[ \frac{-2y}{5} = 12 \]
\[ -2y = 60 \]
\[ y = -30 \]

Thay \( y = -30 \) vào \( y - x = 12 \):
\[ -30 - x = 12 \]
\[ x = -42 \]

Vậy, \( x = -42 \).

2a) \( \frac{x}{10} = \frac{y}{6} = \frac{z}{21} \) và \( 5x + y - 2z = 28 \)

Đặt \( k = \frac{x}{10} = \frac{y}{6} = \frac{z}{21} \), ta có:
\[ x = 10k, \quad y = 6k, \quad z = 21k \]

Thay vào phương trình \( 5x + y - 2z = 28 \):
\[ 5(10k) + 6k - 2(21k) = 28 \]
\[ 50k + 6k - 42k = 28 \]
\[ 14k = 28 \]
\[ k = 2 \]

\[ x = 10(2) = 20, \quad y = 6(2) = 12, \quad z = 21(2) = 42 \]

Vậy, \( x = 20, y = 12, z = 42 \).

2b) \( \frac{x}{3} = \frac{y}{4} \), \( \frac{y}{5} = \frac{z}{7} \), và \( 2x + 3y - z = 124 \)

Đặt \( k = \frac{x}{3} = \frac{y}{4} \), ta có:
\[ x = 3k, \quad y = 4k \]

Thay vào \( \frac{y}{5} = \frac{z}{7} \):
\[ \frac{4k}{5} = \frac{z}{7} \]
\[ z = \frac{28}{5}k \]

Thay \( x, y, z \) vào \( 2x + 3y - z = 124 \):
\[ 2(3k) + 3(4k) - \frac{28}{5}k = 124 \]
\[ 6k + 12k - \frac{28}{5}k = 124 \]
\[ \frac{30k + 60k - 28k}{5} = 124 \]
\[ \frac{62k}{5} = 124 \]
\[ 62k = 620 \]
\[ k = 10 \]

\[ x = 3(10) = 30, \quad y = 4(10) = 40, \quad z = \frac{28}{5}(10) = 56 \]

Vậy, \( x = 30, y = 40, z = 56 \).

2c) \( 3x = 2y \), \( 7y = 5z \), và \( x - y + z = 32 \)

Từ \( 3x = 2y \) và \( 7y = 5z \):
\[ x = \frac{2}{3}y, \quad z = \frac{7}{5}y \]

Thay vào \( x - y + z = 32 \):
\[ \frac{2}{3}y - y + \frac{7}{5}y = 32 \]
\[ \frac{10y - 15y + 21y}{15} = 32 \]
\[ \frac{16y}{15} = 32 \]
\[ y = 30 \]

\[ x = \frac{2}{3}(30) = 20, \quad z = \frac{7}{5}(30) = 42 \]

Vậy, \( x = 20, y = 30, z = 42 \).

2d) \( 2x = 3x = 5z \) và \( x + y - z = 95 \)

Từ \( 2x = 3x = 5z \), ta có:
\[ x = \frac{2}{3}x, \quad x = \frac{5}{3}z \]

Vậy, \( x = \frac{5}{3}z \).

Thay vào \( x + y - z = 95 \):
\[ \frac{5}{3}z + y - z = 95 \]
\[ \frac{2}{3}z + y = 95 \]
\[ y = 95 - \frac{2}{3}z \]

Thay \( x \) và \( y \) vào \( 2x = 3x = 5z \):
\[ 2(\frac{5}{3}z) = 3(\frac{5}{3}z) = 5z \]
\[ \frac{10}{3}z = 5z \]
\[ \frac{10}{3} = 5 \]
\[ \text{False} \]

Không có giải pháp thỏ

Nguyễn Thanh Vân
Xem chi tiết
soyeon_Tiểubàng giải
10 tháng 10 2016 lúc 13:23

1) Ta có:

\(\frac{1+2y}{18}=\frac{1+4y}{24}\)\(\Rightarrow\left(1+2y\right).24=\left(1+4y\right).18\)

=> 24 + 48y = 18 + 72y

=> 72y - 48y = 24 - 18

=> 24y = 6

\(\Rightarrow y=\frac{6}{24}=\frac{1}{4}\)

Thay \(y=\frac{1}{4}\) vào đề bài ta có:

\(\frac{1+2.\frac{1}{4}}{18}=\frac{1+6.\frac{1}{4}}{6x}\)

\(\Rightarrow\frac{1+\frac{1}{2}}{18}=\frac{1+\frac{3}{2}}{6x}\)

\(\Rightarrow\frac{3}{2}.\frac{1}{18}=\frac{5}{2}:6x\)

\(\Rightarrow\frac{1}{12}=\frac{5}{2}:6x\)

\(\Rightarrow6x=\frac{5}{2}:\frac{1}{12}=\frac{5}{2}.12=30\)

=> x = 30 : 6 = 5

Vậy \(x=5;y=\frac{1}{4}\)

2) Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(x+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\frac{2.\left(x+y+z\right)}{x+y+z}=2\)

                                                                                  \(=\frac{1}{x+y+z}\) (theo đề bài)

\(\Rightarrow x+y+z=\frac{1}{2}\)

Ta có: \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=2\)

\(\Rightarrow\frac{y+z+1}{x}+1=\frac{x+z+2}{y}+1=\frac{x+y-3}{z}+1=2+1\)

\(\Rightarrow\frac{x+y+z+1}{x}=\frac{x+y+z+2}{y}=\frac{x+y+z-3}{z}=3\)

\(\Rightarrow\frac{\frac{1}{2}+1}{x}=\frac{\frac{1}{2}+2}{y}=\frac{\frac{1}{2}-3}{z}=3\)

\(\Rightarrow\frac{3}{2}:x=\frac{5}{2}:y=\frac{-5}{2}:z=3\)

\(\Rightarrow\begin{cases}x=\frac{3}{2}:3=\frac{1}{2}\\y=\frac{5}{2}:3=\frac{5}{6}\\z=\frac{-5}{2}:3=\frac{-5}{6}\end{cases}\)

Vậy \(x=\frac{1}{2};y=\frac{5}{6};z=\frac{-5}{6}\) 

 

 

Nguyễn Thanh Vân
9 tháng 10 2016 lúc 19:53

/hoi-dap/question/100672.html

qwerty
9 tháng 10 2016 lúc 20:14

quá sức của mik rồi

Mạc Hy
Xem chi tiết
Huỳnh Quang Sang
27 tháng 9 2019 lúc 20:08

Ta có : 3x = 2y => x/2 = y/3

7x = 5z => x/5 = z/7

 => x/2 = y/3 ; x/5 = z/7

 => x/10 = y/15 ; x/10 = z/21

 => x/10 = y/15 = z/21

 Áp dụng tính chất dãy tỉ số bằng nhau :

 x/10 = y /15 = z/21 = (x-y+z)/(10-15+21) = 32/16 = 2

đến đây xét x,y,z

 Câu b tương tự