Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Như Anh
Xem chi tiết
Đào Quang Minh
Xem chi tiết
Đoàn Đức Duy
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 7 2023 lúc 8:32

A<1-1/2+1/2-1/3+...+1/8-1/9=1-1/9=8/9

A>1/2-1/3+1/3-1/4+...+1/9-1/10=1/2-1/10=2/5

=>2/5<A<8/9

Earth-K-391
Xem chi tiết

Giải:

a)  \(\dfrac{7}{x}< \dfrac{x}{4}< \dfrac{10}{x}\) 

\(\Rightarrow7< \dfrac{x^2}{4}< 10\) 

\(\Rightarrow\dfrac{28}{4}< \dfrac{x^2}{4}< \dfrac{40}{4}\) 

\(\Rightarrow x^2=36\) 

\(\Rightarrow x=6\) 

b) \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}\) 

Ta có:

\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\) 

\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\) 

\(\dfrac{1}{4^2}=\dfrac{1}{4.4}< \dfrac{1}{3.4}\) 

\(...\) 

\(\dfrac{1}{9^2}=\dfrac{1}{9.9}< \dfrac{1}{8.9}\) 

\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\) 

\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}\) 

\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{9}\) 

\(\Rightarrow A< \dfrac{8}{9}\left(1\right)\) 

Ta có:

\(\dfrac{1}{2^2}=\dfrac{1}{2.2}>\dfrac{1}{2.3}\) 

\(\dfrac{1}{3^2}=\dfrac{1}{3.3}>\dfrac{1}{3.4}\) 

\(\dfrac{1}{4^2}=\dfrac{1}{4.4}>\dfrac{1}{4.5}\) 

 \(...\) 

\(\dfrac{1}{9^2}=\dfrac{1}{9.9}>\dfrac{1}{9.10}\) 

\(\Rightarrow A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\) 

\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\) 

\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{10}\) 

\(\Rightarrow A>\dfrac{2}{5}\left(2\right)\) 

Từ (1) và (2), ta có:

\(\Rightarrow\dfrac{2}{5}< A< \dfrac{8}{9}\left(đpcm\right)\)

Trần Văn Thành
Xem chi tiết
Thanh Tùng DZ
18 tháng 10 2017 lúc 17:38

1.

a) ( 57 + 59 ) . ( 68 + 610 ) . ( 24 - 42 )

= ( 57 + 59 ) . ( 68 + 610 ) . 0

= 0

b) 9 < 3x < 27

32 < 3x < 33

2 < x < 3

Vậy 2 < x < 3

2.

a) xy - 2x = 0

x ( y - 2 ) = 0

\(\Rightarrow\orbr{\begin{cases}x=0\\y-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\y=2\end{cases}}}\)

b) ( x- 4 ) . ( x - 3 ) = 0

\(\Rightarrow\orbr{\begin{cases}x-4=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=3\end{cases}}\)

c) Ta có : 3n+2 + 3n = 3n . 32 + 3n = 3n . ( 32 + 1 ) = 3n . 10 \(⋮\)10

Nguyễn Thu Hà
Xem chi tiết
Nguyễn T.Kiều Linh
28 tháng 3 2017 lúc 20:29

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}\)

Xét: \(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

.

.

.

\(\dfrac{1}{9^2}< \dfrac{1}{8.9}\)

\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\)

\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{9}\Rightarrow A< \dfrac{8}{9}\)(1)

Xét: \(\dfrac{1}{2^2}>\dfrac{1}{2.3}\)

\(\dfrac{1}{3^2}>\dfrac{1}{3.4}\)

.

.

.

\(\dfrac{1}{9^2}>\dfrac{1}{9.10}\)

\(\Rightarrow A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\)

\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{10}\Rightarrow A>\dfrac{2}{5}\) (2)

Từ (1) và (2)

\(\Rightarrow\dfrac{8}{9}>A>\dfrac{2}{5}\left(đpcm\right)\)

Nguyễn Ngọc Quế Anh
Xem chi tiết
Kalluto Zoldyck
27 tháng 3 2016 lúc 10:33

A = 1 / 2.2 + 1 / 3.3 + 1 / 4.4 + .... + 1 / 9.9

A < 1/1.2 + 1/2.3 + .....+ 1/8.9

A < 1 - 1/2 + 1/2 - 1/3 + ......+ 1/8 - 1/9

A < 1 - 1/9

=> A < 8/9    (1)

Mặt khác ta có:

A > 1/2.3 + 1/3.4 +.....+ 1/9.10

A > 1/2 - 1/3 + 1/3 - 1/4 +.......+ 1/9 - 1/10

 A > 1/2 - 1/10

A > 4/10 

=> A > 2/5     (2)

Từ (1) và (2) => 8/9 > A > 2/5

**** K mk nha các bn! đúng 100000% lun đó!!!!!!!!!

Trần Đăng Khoa
27 tháng 3 2016 lúc 10:20

con gà quế

Hoài Bão Đặng
27 tháng 3 2016 lúc 10:24

Đặt tổng quát $\frac{k}{k-1} > \frac{1}{k^2} > \frac{k}{k+1}$ rồi thế vào A được..

Nguyễn Xuân Khởi
Xem chi tiết
ST
14 tháng 5 2017 lúc 10:54

a, Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{2017^2}< \frac{1}{2016.2017}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2017^2}>\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2016.2017}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2016}-\frac{1}{2017}=1-\frac{1}{2017}< 1\)Vậy...

b, Đặt A = \(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+...+\frac{1}{10000}\)

\(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)

\(A=\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)

Đặt B = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};.....;\frac{1}{50^2}< \frac{1}{49.50}\)

\(\Rightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}< 1\)

Thay B vào A ta được:

\(A< \frac{1}{4}\left(1+1\right)=\frac{1}{4}.2=\frac{1}{2}\)

Vậy....

ST
14 tháng 5 2017 lúc 12:38

c, Ta có: \(\frac{1}{2^2}>\frac{1}{2.3};\frac{1}{3^2}>\frac{1}{3.4};....;\frac{1}{9^2}>\frac{1}{9.10}\)

\(\Rightarrow A>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)(1)

Lại có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};....;\frac{1}{9^2}< \frac{1}{8.9}\)

\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}=1-\frac{1}{9}=\frac{8}{9}\)(2)

Từ (1) và (2) suy ra \(\frac{2}{5}< A< \frac{8}{9}\)(đpcm)

d, chắc là đề sai

e, giống câu a

Nguyễn Thị Thu Hiền
Xem chi tiết