Cho x+y=1 Tính giá trị biểu thức: A=2(x^3-y^3)-3(x+y)^2
1 . Cho x+y=a và x.y=b . Tính giá trị biểu thức sau theo a và b :
a) x2 + y2
b) x3 + y3
c) x4 + y4
d) x5 + y5
2 . Cho x+y=1 .Tính giá trị biểu thức x3 + y3 + 3xy và x-y=1 .Tính giá trị biểu thức x3 - y3 - 3xy
3 . Cho a+b=1 . Tính giá trị biểu thức : M = a3 + b3 + 3ab .( 12 + b2 ) + 6.a2 .b2 . ( a+b)
a) tính giá trị của biểu thức: x^2+2y tại x=2, y= –3 b) tính giá trị của biểu thức: x^2+2xy+y^2 tại x=4, y=6 c) tính giá trị của biểu thức: P= x^2-4xy+4y^2 tại x=1 và y= 1/2
a: Khi x=2 và y=-3 thì \(x^2+2y=2^2+2\cdot\left(-3\right)=4-6=-2\)
b: \(A=x^2+2xy+y^2=\left(x+y\right)^2\)
Khi x=4 và y=6 thì \(A=\left(4+6\right)^2=10^2=100\)
c: \(P=x^2-4xy+4y^2=\left(x-2y\right)^2\)
Khi x=1 và y=1/2 thì \(P=\left(1-2\cdot\dfrac{1}{2}\right)^2=\left(1-1\right)^2=0\)
B = 2x(4x + 1) − 8x^2 (x + 1) + (2x)^3 − 2x + 3.
c) C = (x − 1)^3 + (x + 1)^3 + 2x(x + 2)(x − 2).
d) D = (x + y − 5)^2 − 2(x + y − 5)(x + 3) + x^2 + 6x + 9
Câu 2. a) Cho x + y = 7 và x.y = 12. Tính giá trị của biểu thức (x − y)^2 .
b) Cho x + y = 1. Tính giá trị của biểu thức 3(x^2 + y^2 ) − 2(x^3 + y^3 ).
\(B=8x^2+2x-8x^3-8x^2+8x^3-2x+3=3\)
\(C=x^3-3x^2+3x-1+x^3+3x^2+3x+1+2x^3-8x=4x^3-2x\)
\(D=\left(x+y-5\right)^2-2\left(x+y-5\right)\left(x+3\right)+\left(x+3\right)^2=\left(x+y-5-x-3\right)^2=\left(y-8\right)^2\)
câu 2. ta có
a.\(\left(x-y\right)^2=\left(x+y\right)^2-4xy=7^2-4\times12=1\)
b.\(3\left(x^2+y^2\right)-2\left(x^3+y^3\right)=3\left(x+y\right)^2-6xy-2\left(x+y\right)^3+6xy\left(x+y\right)=3-6xy-2+6xy=1\)
tính giá trị biểu thức
1)cho x+y=1. tính giá trị biểu thức: x^3+3xy+y^3
2)A= a^3-3a^2+3a+4 với a=11
3)B=1995^3+1/1995^2-1994
a) cho x+y=1. Tính giá trị biểu thức x^3+ y^3+ 3xy
b) cho x-y=1. Tính giá trị biểu thức x^3- y^3- 3xy
x^3+ y^3+ 3xy
=(x+y)(x^2 -xy + y^2 ) + 3xy
=x^2 -xy + y^2 + 3xy
=x^2 + 2xy + y^2
=(x+y)^2 =1
=> x^3+ y^3+ 3xy=1
cho x-y=1. Tính giá trị của biểu thức A=3(x^2+y^2)-2(x^3-y^3)
Ta có A = 3(x2 + y2) - 2(x3 - y3)
= 3(x2 + y2) - 2(x - y)(x2 + xy + y2)
= 3(x2 + y2) - 2(x2 + xy + y2) Vì x - y = 1
= 3x2 + 3y2 - 2x2 - 2xy - 2y2
= x2 - 2xy + y2
= (x - y)2
= 1 (Vì x - y = 1)
Vậy A = 1 khi x - y = 1
a) cho x+y=1 tính giá trị của biểu thức x3 + y3 +xy = 1/4
b) cho x-y=1 tính giá trị của biểu thức x3- y3 -xy=12
c) cho x+y=a,x2 + y2 = b, tính x3 + y3
Đề a,b bạn ghi mik ko hiểu
c)Ta có : \(x+y=a=>x^2+y^2+2xy=a^2\)
Mà \(x^2+y^2=b\)nên\(b+2xy=a^2=>xy=\frac{a^2-b}{2}\)
\(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\)
Thay \(x+y=a\) ; \(x^2+y^2=b\)và \(xy=\frac{a^2-b}{2}\)ta có : \(x^3+y^3=a\left(b-\frac{a^2-b}{2}\right)=ab-\frac{a^3-ab}{2}\)
Bài 1: Cho xyz=2 và x+y+z=0. Tính giá trị của biểu thức: N=(x+y)(y+z)(x+z)
Bài 2: Tính giá trị biểu thức: 3a-2b / a-3b với a/b= 10/3
Bài 5: Tính giá trị của biểu thức: a-8 / b-5 - 4a-b / 3a+3 với a-b=3
Bài 1 :
\(N=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
Ta có : \(x+y+z=0\Rightarrow x+y=-z;y+z=-x;x+z=-y\)
hay \(-z.\left(-x\right)\left(-y\right)=-zxy\)
mà \(xyz=2\Rightarrow-xyz=-2\)
hay N nhận giá trị -2
Bài 2 :
\(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)Đặt \(a=10k;b=3k\)
hay \(\frac{30k-6k}{10k-9k}=\frac{24k}{k}=24\)
hay biểu thức trên nhận giá trị là 24
c, Ta có : \(a-b=3\Rightarrow a=3+b\)
hay \(\frac{3+b-8}{b-5}-\frac{4\left(3+b\right)-b}{3\left(3+b\right)+3}=\frac{-5+b}{b-5}-\frac{12+4b-b}{9+3b+3}\)
\(=\frac{-5+b}{b-5}-\frac{12+3b}{6+3b}\)quy đồng lên rút gọn, đơn giản rồi
1.Ta có:\(x+y+z=0\)
\(\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)
\(\Rightarrow N=\left(x+y\right)\left(y+z\right)\left(x+z\right)=\left(-z\right)\left(-x\right)\left(-y\right)=-2\)
2.Ta có:\(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)
Đặt \(\frac{a}{10}=\frac{b}{3}=k\Rightarrow a=10k;b=3k\)
Ta có:\(A=\frac{3a-2b}{a-3b}=\frac{3.10k-2.3k}{10k-3.3k}=\frac{30k-6k}{10k-9k}=\frac{k\left(30-6\right)}{k\left(10-9\right)}=24\)
Vậy....
Bài 1: Cho xyz=2 và x+y+z=0. Tính giá trị của biểu thức: N=(x+y)(y+z)(x+z)
Bài 2: Tính giá trị biểu thức: 3a-2b / a-3b với a/b= 10/3
Bài 5: Tính giá trị của biểu thức: a-8 / b-5 - 4a-b / 3a+3 với a-b=3