CMR: 122004-21000 chia hết cho 10
cho a + 4.n chia hết n.3. CMR 10.a+b chia hết 13
cho 3a + 2b chia hết 17. CMR 10a +bchia hết 17
cho 5a + 3b chia hết 7. CMR a+4b chia hết 7
1, CMR : 23^401 + 38^202 - 2^433 chia hết cho 5
2, CMR: 9^2014 +3^2013 +2^2012 chia hết cho 10
3, CMR : 3^2013 + 2^2013 chia hết cho 5
lớp 6 cứt; lớp 7,8 rồi; tao học lớp 6 mà đã biết đâu
Cậu bùi danh nghệ gì đó ơi đây là toán nâng cao chứ ko phải toán lớp 7,8 như cậu nói đâu
1, CMR : 23^401 + 38^202 - 2^433 chia hết cho 5
2, CMR: 9^2014 +3^2013 +2^2012 chia hết cho 10
3, CMR : 3^2013 + 2^2013 chia hết cho 5
1) \(23^{401}+38^{202}-2^{433}=23^{4.100}.23+38^{4.50}.38^2-2^{4.108}.2^1=\left(..1\right).23+\left(..6\right).1444-\left(..6\right).2=\left(..3\right)+\left(..4\right)-\left(..2\right)=\left(..5\right)\)
CMR câu A 10^2023+3 chia hết cho 3
câu B 10^789 +8 chia hết cho 9
Đính chính câu A, phải cộng với 2 mới chia hết cho 3 (vì tổng số các chữ số bằng 3), nên theo đề cộng cho 3 không phù hợp, bạn xem lại đề câu a.
Câu A
Ta có \(A=10^{2023}⋮10\)
Nên \(A+3⋮3\)
\(\Rightarrow dpcm\)
Câu B
\(B=10^{789}\) có tổng các chữ số bằng 1
\(\Rightarrow B+8\) có tổng các chữ số bằng 9
\(\Rightarrow dpcm\)
a)CMR nếu:(ab+cd+eg) chia hết cho 11 thì abcdeg chia hết cho 11
b)CMR:1028+8 chia hết cho 72
biết 3^n+1 chia hết cho 10,CMR {3^n+4} +1 chia hết cho 10
Ta có : \(3^n+1\) chia hết cho \(10\)
\(\Rightarrow3^4\left(3^n+1\right)\) chia hết cho \(10\)
\(\Rightarrow\left(3^4\cdot3^n+3^4\cdot1\right)\) chia hết cho \(10\)
\(\Rightarrow\left(3^{n+4}+81\right)\) chia hết cho \(10\)
\(\Rightarrow\left(3^{n+4}+1+80\right)\) chia hết cho \(10\)
Vì \(80\) chia hết cho \(10\)
\(\Rightarrow\left(3^{n+4}+1\right)\) chia hết cho \(10\)
cho ( x + 10 y ) chia hết cho 11
CMR ( x + 9y ) chia hết cho 11
(x + 10y -y) chia hết cho 11
suy ra x chia hết cho 11 , 10y -y chia hết cho 11
mà trong (x+9y) 9y cũng tương tự như trên 9y chia hết cho 11
mà trong 1 tổng có các số trong đó chia hết cho cùng 1 số thì tổng đó chia hết cho số đó
suy ra (x+9y) chia hết cho 11(điều phải chứng minh)
CMR 7^6+7^5-7^4 chia hết cho 55
CMR 5^8+7.5^6+10^5 chia hết cho 6
cho số 10n-1 chia hết cho 13 .CMR :
a. 102n-1 chia hết cho 13
b. 103n-1 chia hết cho 13
CM. Ta có thể viết 100...01 = 103n+ 1, trong đó n là số nguyên dương. Sử dụng hằng đẳng thức a3+ b3= (a+b)(a2- a b + b2) với a = 10nvà b = 1, ta thu được (10n)3+ 1 = (10n+ 1)(102n- 10n+ 1). Do (10n+ 1) > 1 và (102n- 10n+ 1) > 1 khi n là nguyên dương nên ta có đpcm.
bạn tham khảo nha
Ta có:
102n-1=102n-10n+10n-1=10n(10n-1)+(10n-1)\(⋮13\)
103n-1=103n-102n+102n-1=102n(10n-1)+(102n-1)\(⋮13\)