Cho \(a,b\ge0\) cmr:
\(ab+\frac{a}{b}+\frac{b}{a}\ge a+b+1\)
cho \(a\ge0,b\ge0\)
cmr \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\)
\(BDT\Leftrightarrow\frac{1}{1+a^2}+\frac{1}{1+b^2}-\frac{2}{1+ab}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2\left(ab-1\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\ge0\) đúng
xập bẫy cuả @LUZIMI rồi
tạm cho cái BĐT sau quy đồng là đúng thì ĐK \(a.b\ge1\)
Mà đã gọi BĐT có dấu "=" => đẳng thức khi nào?
a) Cho \(a;b\ge0\)
CMR: \(a+b\ge\frac{12a+b}{9+ab}\)
b) Cho \(a^2+b^2\ge\frac{1}{4}\)
CMR: \(a^4+b^4\ge\frac{1}{32}\)
cau b . ta co
a4+b4\(\ge\frac{\left(a^2+b^2\right)^2}{2}\)\(\ge\)\(\frac{\frac{1}{16}}{2}\)=1/32
câu a đề phải là 12ab
Dùng BĐT cô si
\(ab\ge2\sqrt{ab}\)
\(9+ab\ge2.3\sqrt{ab}\)
\(\Rightarrow\left(a+b\right)\left(9+ab\right)\ge12ab\)
Sửa đề: \(CMR:a+b\ge\frac{12ab}{9+ab}\)
Áp dụng BĐT Cô-si cho 2 số không âm ta có:
\(a+b\ge2\sqrt{ab}\)
\(9+ab\ge6\sqrt{ab}\)
\(\Rightarrow\left(a+b\right)\left(9+ab\right)\ge12ab\)
\(\Rightarrow a+b\ge\frac{12ab}{9+ab}\)
cho a,b,c \(\ge0\) và \(a+b+c\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
cmr \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\)
a, Cho a,b>0 , CMR: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
b. Cho a,b,c,d > 0. CMR: \(\frac{a-d}{d+b}+\frac{d-b}{b+c}+\frac{b-c}{c+a}+\frac{c-a}{a+d}\ge0\)
a/ Biến đổi tương đương:
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow a^2+2ab+b^2\ge4ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Vậy BĐT được chứng minh
b/ \(VT=\frac{a-d}{b+d}+1+\frac{d-b}{b+c}+1+\frac{b-c}{a+c}+1+\frac{c-a}{a+d}+1-4\)
\(VT=\frac{a+b}{b+d}+\frac{c+d}{b+c}+\frac{a+b}{a+c}+\frac{c+d}{a+d}-4\)
\(VT=\left(a+b\right)\left(\frac{1}{b+d}+\frac{1}{a+c}\right)+\left(c+d\right)\left(\frac{1}{b+c}+\frac{1}{a+d}\right)-4\)
\(\Rightarrow VT\ge\left(a+b\right).\frac{4}{b+d+a+c}+\left(c+d\right).\frac{4}{b+c+a+d}-4\)
\(\Rightarrow VT\ge\frac{4}{\left(a+b+c+d\right)}\left(a+b+c+d\right)-4=4-4=0\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=d\)
Với \(a\ge b\ge c\ge0\). CMR \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\)
Theo giả thiết ta có: \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}-\frac{b}{a}-\frac{c}{b}-\frac{a}{c}\)
\(=\frac{a^2c+b^2a+bc^2-b^2c-c^2a-a^2b}{abc}\)
\(=\frac{c\left(a^2-b^2\right)+ab\left(b-a\right)+c^2\left(b-a\right)}{abc}\)
\(=\frac{c\left(a-b\right)\left(a+b\right)-ab\left(a-b\right)-c^2\left(a-b\right)}{abc}\)
\(=\frac{\left(a-b\right)\left(ca+cb-ab-c^2\right)}{abc}\)
\(=\frac{\left(a-b\right)\left[a\left(c-b\right)+c\left(b-c\right)\right]}{abc}\)
\(=\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{abc}\le0\)
Vì \(a\ge b\ge c\ge0\)
\(\Rightarrow\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\le\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\)
Bạn xem lại đề nhé!
Cho \(a\ge0\), \(b\ge0\). CMR: \(\frac{1}{2}\left(a+b\right)^2+\frac{1}{4}\left(a+b\right)\ge a\sqrt{b}+b\sqrt{a}\)
CMR \(a^3+b^3\ge ab\left(a+b\right)\forall a,b\ge0\)
Áp dụng kết quả trên cmr: \(\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{c^3+a^3+1}\le1\)
Với điều kiện \(\left\{{}\begin{matrix}\forall a,b\ge0\\abc=1\end{matrix}\right.\)
\(a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)
\(\frac{1}{a^3+b^3+1}\le\frac{1}{ab\left(a+b\right)+1}=\frac{abc}{ab\left(a+b\right)+abc}=\frac{abc}{ab\left(a+b+c\right)}=\frac{c}{a+b+c}\)
Tương tự \(\frac{1}{b^3+c^3+1}\le\frac{a}{a+b+c}\); \(\frac{1}{a^3+c^3+1}\le\frac{b}{a+b+c}\)
Cộng vế với vế:
\(\sum\frac{1}{a^3+b^3+1}\le\frac{a+b+c}{a+b+c}=1\)(đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(Cho\) \(a,b,c\ge0\)\(CMR\)\(\frac{1}{a^2+ab}+\frac{1}{b^2+bc}+\frac{1}{c^2+ca}\ge\frac{27}{2\left(a+b+c\right)^2}.\)
đề đúng: \(a,b,c>0\)
chuẩn hoá: \(a+b+c=3\)
\(\frac{1}{a^2+ab}+\frac{a}{2}+\frac{a+b}{4}\ge\frac{3}{2}\)\(\Leftrightarrow\)\(\frac{1}{a^2+ab}\ge\frac{3}{2}-\frac{3}{4}a-\frac{1}{4}b\)
tương tự \(\Rightarrow\)\(\Sigma\frac{1}{a^2+ab}\ge\frac{9}{2}-\left(a+b+c\right)=\frac{3}{2}=\frac{27}{2\left(a+b+c\right)^2}\)
dấu "=" xảy ra khi \(a=b=c=1\)
chưa học chuẩn hoá thì dùng cách này:
gia su: \(a+b+c=3k>0\)
\(\frac{1}{a^2+ab}+\frac{a}{2k^3}+\frac{a+b}{4k^3}\ge\frac{3}{2k^2}\)\(\Leftrightarrow\)\(\frac{1}{a^2+ab}\ge\frac{3}{2k^2}-\frac{3}{4k^3}a-\frac{1}{4k^3}b\)
\(\Rightarrow\)\(\Sigma\frac{1}{a^2+ab}\ge\frac{9}{2k^2}-\frac{a+b+c}{4k^3}=\frac{3}{2k^2}=\frac{27}{2\left(a+b+c\right)^2}\)
dấu "=" xảy ra khi \(a=b=c=k\)
Có cách khác không thấy áp đặt ở cách 2 quá còn cách chuẩn hóa thì cảm giác không ổn
\(\frac{1}{a^2+ab}\ge\frac{2}{\frac{1}{4}\left(3a+b\right)^2}\)
\(\Rightarrow\Sigma_{cyc}\frac{1}{a^2+ab}\ge\Sigma_{cyc}\frac{8}{\left(3a+b\right)^2}\ge8\frac{\left(\frac{1}{3a+b}+\frac{1}{3b+c}+\frac{1}{3c+a}\right)^2}{3}\ge\frac{8\frac{81}{16\left(a+b+c\right)^2}}{3}=\frac{27}{2\left(a+b+c\right)^2}\)
cho a,b,c,b \(\ge0.CMR\)
\(\frac{a^2}{b^5}+\frac{b^2}{c^5}+\frac{c^2}{d^5}+\frac{d^2}{a^5}\ge\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)