Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Hồng Ngọc
Xem chi tiết
Lê Hồng Ngọc
Xem chi tiết
Known
Xem chi tiết
Dương Lam Hàng
13 tháng 4 2019 lúc 15:29

Theo đề: \(x+y+z=0\)

\(\Rightarrow x+y=-z\)

\(\Rightarrow-\left(x+y\right)=z\)

\(\Leftrightarrow-\left(x+y\right)^5=z^5\)

\(x^2+y^2+z^2=1\)

\(\Rightarrow x^2+y^2=1-z^2\)

\(\Rightarrow\left(x+y\right)^2-2xy=1-z^2\)

\(\Rightarrow\left(x+y\right)^2=1-z^2+2xy\)

\(\Rightarrow\left(-z\right)^2=1-z^2+2xy\)

\(\Leftrightarrow xy=\frac{2z^2-1}{2}\)

Nên ta có:

\(VT=x^5+y^5+z^5=x^5+y^5-\left(x+y\right)^5\)

                                   \(=x^5+y^5-\left(x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5\right)\)

                                   \(=x^5+y^5-x^5-5x^4y-10x^3y^2-10x^2y^3-5xy^4-y^5\)

                                    \(=-5x^4y-10x^3y^2-10x^2y^3-5xy^4\)

                                    \(=-5xy\left(x^3+y^3\right)-10x^2y^2\left(x+y\right)\)

                                    \(=-5xy\left(x+y\right)\left(x^2-xy+y^2\right)-10x^2y^2\left(x+y\right)\)

                                     \(=-5xy\left(x+y\right)\left(x^2-xy+y^2+2xy\right)\)

                                     \(=-5xy\left(x+y\right)\left(x^2+xy+y^2\right)\)

                                       \(=-5.\frac{2z^2-1}{2}.\left(-z\right).\left(1-z^2+\frac{2z^2-1}{2}\right)\)

                                       \(=\frac{5z\left(2z^2-z\right)}{4}=\frac{5}{4}z\left(2x^2-1\right)=\frac{5}{4}\left(2z^3-z\right)=VP\)

=> đpcm

Trang Nguyễn
Xem chi tiết
NHK
21 tháng 12 2019 lúc 22:07

hơi dài bạn đợi đc ko

Khách vãng lai đã xóa
NHK
21 tháng 12 2019 lúc 22:12

mk ko vt lại đề 

=> 3x^2+3y^2+3z^2 = x^2+y^2+z^2 +2xy+2yz+2zx

=> 2x^2+2y^2+2z^2-2xy-2yz-2zx=0

=>....

=> (x-y)^2 +(y-z)^2+ (z-x)^2=0

=>.......

=>x=y=z

Khách vãng lai đã xóa
Nam Thanh Long
Xem chi tiết
alibaba nguyễn
22 tháng 5 2017 lúc 11:19

\(\frac{x^2}{2y}+\frac{y^2}{2x}+\frac{y^2}{2z}+\frac{z^2}{2y}+\frac{z^2}{2x}+\frac{x^2}{2z}\ge\frac{\left(2x+2y+2z\right)^2}{4\left(x+y+z\right)}=x+y+z\)

Linh Cao Phương Linh
Xem chi tiết
ILoveMath
6 tháng 3 2022 lúc 21:11

( x - 1 )2018 + (y - 2 )2020+(z-3)2022=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-2=0\\z-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)

\(A=\dfrac{1}{9}\left(-x\right)^{2021}y^2z^3=\dfrac{1}{3}\left(-1\right)^{2021}.2^2.3^3=\dfrac{1}{3}.\left(-1\right).4.27=-36\)

Vinne
Xem chi tiết
Edogawa Conan
4 tháng 9 2021 lúc 10:40

Ta có: \(\dfrac{x^3}{y+2z}+\dfrac{y^3}{z+2x}+\dfrac{z^3}{x+2y}=\dfrac{x^4}{xy+2zx}+\dfrac{y^4}{yz+2xy}+\dfrac{z^4}{zx+2yz}\)

\(\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{xy+2zx+yz+2xy+zx+2yz}=\dfrac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\)

Mà ta lại có: \(xy+yz+zx\le x^2+y^2+z^2\)

 \(\Rightarrow\dfrac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{3\left(x^2+y^2+z^2\right)}=\dfrac{1^2}{3.1}=\dfrac{1}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\dfrac{1}{\sqrt{3}}\)

Big City Boy
Xem chi tiết
Akai Haruma
7 tháng 3 2021 lúc 21:37

** Bạn lưu ý lần sau viết đề bằng công thức toán!

Đề cần sửa thành $\leq \frac{4}{3}$

Lời giải:

Áp dụng BĐT AM-GM và Cauchy-Schwarz:

\(\frac{1}{2x^2+y^2+z^2}=\frac{1}{(x^2+z^2)+(x^2+y^2)}\leq \frac{1}{2xy+2xz}=\frac{1}{2}.\frac{1}{xy+xz}\leq \frac{1}{8}\left(\frac{1}{xy}+\frac{1}{xz}\right)\)

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế suy ra:

\(\sum \frac{1}{2x^2+y^2+z^2}\leq \frac{1}{4}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)=\frac{x+y+z}{4xyz}\) $(1)$

Mặt khác:

$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4\Rightarrow 4xyz=xy+yz+xz$

$\Rightarrow 16x^2y^2z^2=(xy+yz+xz)^2\geq 3xyz(x+y+z)$ (theo BĐT AM-GM)

$\Rightarrow x+y+z\leq \frac{16}{3}xyz (2)$

Từ $(1);(2)\Rightarrow \sum \frac{1}{2x^2+y^2+z^2}\leq \frac{4}{3}$ 

Dấu "=" xảy ra khi $x=y=z=\frac{3}{4}$

Nguyễn Việt Lâm
7 tháng 3 2021 lúc 21:38

\(\dfrac{1}{2x^2+y^2+z^2}=\dfrac{1}{x^2+y^2+x^2+z^2}\le\dfrac{1}{2xy+2xz}\le\dfrac{1}{8}\left(\dfrac{1}{xy}+\dfrac{1}{xz}\right)\)

Tương tự: \(\dfrac{1}{x^2+2y^2+z^2}\le\dfrac{1}{8}\left(\dfrac{1}{xy}+\dfrac{1}{yz}\right)\) ; \(\dfrac{1}{x^2+y^2+2z^2}\le\dfrac{1}{8}\left(\dfrac{1}{xz}+\dfrac{1}{yz}\right)\)

Cộng vế:

\(VT\le\dfrac{1}{4}\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}\right)\le\dfrac{1}{4}.\dfrac{1}{3}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2=\dfrac{4}{3}\)

Đề bài sai

Uchiha Sasuke
Xem chi tiết
Quay Cuồng
26 tháng 8 2017 lúc 20:13

bạn không biết làm thì làm sao biết người ta làm đúng hay sai để k

Mai Thùy Linh
20 tháng 12 2021 lúc 19:29

đúng rồi. nếu bn biết câu trả lời thì bạn mới k dc,còn khi bn hỏi ngta mà k thì bn lại ko biết dc.

Khách vãng lai đã xóa