Biết rằng đa thức f(x)= x2+mx+n+1 có 2 nghiệm là 2 số nguyên dương phân biệt.
Cm m2 + n2 là hợp số
Biết rằng đa thức f(x) =x2 +mx +n +1 có hai nghiệm là 2 số nguyên dương phân biệt . Chứng minh m2 +n2 là hợp số.
Ai làm hộ, tớ cho tik. Thanks
1)Tìm giá trị của m để pt \(\left(m^2-9\right)x=m^2-5m+6\)có nghiệm là số âm
2)Cho biết \(2x^2+\frac{14}{x^2}+\frac{y^2}{2}=16\)Tìm giá trị lớn nhất, nhỏ nhất của biểu thức B=xy
3)Tìm các số nguyên dương x, y, z thỏa mãn: 16(xyz+x+z)=21(yz+1)
4)Biết rằng đa thức f(x)=x2+mx+n+1 có 2 nghiệm là 2 số nguyên dương phân biệt. Cm m2+n2 là hợp số
cho các số thực a, b, c và đa thức g(x)=x^3 + ax^2 + x + 10 có 3 nghiệm phân biệt. Biết rằng mỗi nghiệm của đa thức g(x) lại là nghiệm của đa thức f(x)=x^4 + x^3 + bx^2 + 100x + c. Tính giá trị của f(1)
Cho đa thức f(x)= 2016 x^4-32(25k+2)+k^2-100(k là số thực dương cho trước). Biết đa thức f(x)có đúng 3 nghiệm phân biệt a,b,c(a<b<c) Tính a-c
Cho đa thức f(x)= 2016 x^4-32(25k+2)+k^2-100(k là số thực dương cho trước). Biết đa thức f(x)có đúng 3 nghiệm phân biệt a,b,c (a<b<c)tính a-c
Sửa lại f(x) = \(2016x^4-32\left(25k+2\right)x^2+k^2-100\). Và đề là tìm k.
f(x) có đúng 3 nghiệm phân biệt <=> f(x) có 1 nghiệm dương và 1 nghiệm bằng 0
Do đó: f(0) = 0
<=> \(k^2-100=0\)
<=> k = 10 hoặc k = -10
Với k = 10 thay vào ta có: \(f\left(x\right)=2016x^4-8064x^2\) có 3 nghiệm => k = 10 thỏa mãn
Với k = -10 thay vào ta có: \(f\left(x\right)=2016x^4+7936x^2\) có 1 nghiệm => k = -10 loại
Vậy k = 10
Cô ơi, em nghĩ là f(x) có 1 nghiệm bằng 0 và 2 nghiệm nguyên đối nhau (khác 0) chứ ạ, sao lại 1 nghiệm dương,
Umk đúng rồi! Cô bị sai ở dòng thứ 2:
Ngọc sửa lại:
f(x) có 3 nghiệm dương <=> f(x^2) có 1 nghiệm dương và 1 nghiệm bằng 0
Giả sử phương trình x^2 +mx+n+1=0 có các nghiệm x1,x2 là các số nguyên khác 0. Chứng minh rằng m^2 +n^2 là 1 hợp số
Giup minh vs: https://olm.vn/hoi-dap/question/1269512.html
Cho đa thức: \(f\left(x\right)=x^2-\left(m+2\right)x+2m+7\) (m là tham số). Hãy tìm các giá trị nguyên của m để đa thức f(x) có 2 nghiệm nguyên phân biệt
Cho phương trình x 3 - 3 x 2 + m x - 2 m + 2 = 0 (m là tham số). Có bao nhiêu giá trị nguyên dương của m để phương trình có 3 nghiệm phân biệt x1,x2,x3 thỏa mãn x1<1<x2<x3?
A.0
B.3
C.5
D.Vô số
Đáp án A
Ghi nhớ: Nếu hàm số
liên tục trên đoạn và thì phương trình
có ít nhất một nghiệm nằm trong khoảng .
cho đa thức với hệ số nguyên f (n ) có f (1 ) là 2 số lẻ . chứng minh rằng f ( x ) không có nghiệm nguyên.