\(x-\frac{4}{5}=\frac{4}{5}+\left[\frac{3}{7}+\frac{3}{5}\right]\)tìm x
Tìm x:
\(a,\left(3\frac{1}{4}:x\right)\cdot\left(-1\frac{1}{4}\right)=-\frac{5}{3}-\frac{5}{6}\\ b,\left(-1\frac{1}{5}+x\right):\left(-3\frac{3}{5}\right)=-\frac{7}{4}+\frac{1}{4}:\frac{1}{8}\)
Tìm X:
\(\left[\left(35\frac{5}{7}+2\frac{3}{4}\right)-5\frac{5}{7}+\frac{1}{4}\right]:\left(11+X\right)=3\)
\(\left[\left(35\frac{5}{7}+2\frac{3}{4}\right)-5\frac{5}{7}+\frac{1}{4}\right]:\left(11+x\right)=3\)
\(\left[\left(35\frac{5}{7}-5\frac{5}{7}\right)+2\frac{3}{4}+\frac{1}{4}\right]:\left(11+x\right)=3\)
\(\left[30+3\right]:\left(11+x\right)=3\)
\(33:\left(11+x\right)=3\)
\(11+x=11\)
\(x=0\)
\(\left[\left(35\frac{5}{7}+2\frac{3}{4}\right)-5\frac{5}{7}+\frac{1}{4}\right]\div\left(11+x\right)=3\)
\(\left[\left(\frac{35\times7+5}{7}+\frac{2\times4+3}{4}\right)-\frac{5\times7+5}{7}+\frac{1}{4}\right]\div\left(11+x\right)=3\)
\(\left[\left(\frac{250}{7}+\frac{11}{4}\right)-\frac{40}{7}+\frac{1}{4}\right]\div\left(11+x\right)=3\)
\(\left[\frac{1077}{28}-\frac{167}{28}\right]\div\left(11+x\right)=3\)
\(32,5\div\left(11+x\right)=3\)
\(11+x=32,5\div3\)
\(11+x=\frac{65}{6}\)
\(x=\frac{65}{6}-11=-\frac{1}{6}\)
\(\Rightarrow\left[\left(\frac{250}{7}+\frac{11}{4}\right)-\frac{40}{7}+\frac{1}{4}\right]:\left(11+x\right)=3\)
\(\Rightarrow\left(\frac{1000}{28}+\frac{77}{28}-\frac{160}{28}+\frac{7}{28}\right):\left(11+x\right)=3\)
\(\Rightarrow33:\left(11+x\right)=3\)
\(\Rightarrow11+x=11\)
\(\Rightarrow x=0\)
TÌM X
a,\(\left(\frac{1}{7}x-\frac{2}{7}\right).\left(\frac{1}{5}x+\frac{3}{5}\right).\left(\frac{1}{3}x+\frac{4}{3}\right)=6\)
b,\(\left(x^2-4\right).\left(2x+\frac{4}{3}\right)=0\)
Tìm x biết : \(\left(\frac{1}{7}x-\frac{2}{7}\right)\left(\frac{-1}{5}x+\frac{3}{5}\right)\left(\frac{1}{3}x+\frac{4}{3}\right)=0\)
Tích các thừa số là 0 chứng tỏ có ít nhất một tổng có kết quả là 0
Xét 1/7x - 2/7 = 0
=> 1/7 . x = 2/7
x = 2
Xét -1/5x + 3/5 = 0
=> -1/5 . x = -3/5
x = 3
Xét 1/3x + 4/3 = 0
=> 1/3x = -4/3
x = -4
Tìm x:
\(\left(\frac{1}{7}x-\frac{2}{7}\right)\left(-\frac{1}{5}x+\frac{3}{5}\right)\left(\frac{1}{3}x+\frac{4}{3}\right)=0\)
Dùng tạm ngoặc này nhé:
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{7}x-\frac{2}{7}=0\\-\frac{1}{5}x+\frac{3}{5}=0\\\frac{1}{3}x+\frac{4}{3}=0\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{7}x=\frac{2}{7}\\-\frac{1}{5}x=-\frac{3}{5}\\\frac{1}{3}x=-\frac{4}{3}\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\x=3\\x=-4\end{cases}}}}\)
tìm x, x\(\in\)Q:
a) \(\frac{\left(x+\frac{3}{4}\right).\frac{7}{2}-\frac{1}{6}}{-\left(\frac{4}{5}+\frac{1}{3}\right).\frac{1}{2}+1}=2\frac{33}{52}\)
b) \(\frac{\left(5-\frac{2}{7}\right).\frac{7}{9}:\frac{3}{5}}{\left(3x-\frac{5}{6}\right):\frac{1}{7}}=5\frac{5}{21}\)
Tìm x
a)\(\frac{1}{5}-\frac{2}{3}+2x=\frac{1}{2}\)
b)\(4\left(\frac{1}{3}-3\right)+\frac{1}{2}=\frac{5}{6}+x\)
c)\(3\left(\frac{1}{2}-x\right)-5\left(x-\frac{1}{10}\right)=-\frac{7}{4}\)
d)\(4\left(\frac{3}{4}+x\right)-\frac{1}{5}=7x-\frac{1}{7}\)
Giải:
a) \(\frac{1}{5}-\frac{2}{3}+2x=\frac{1}{2}\)
\(\Leftrightarrow2x=\frac{1}{2}-\left(\frac{1}{5}-\frac{2}{3}\right)\)
\(\Leftrightarrow2x=\frac{1}{2}-\frac{-7}{15}\)
\(\Leftrightarrow2x=\frac{11}{15}\)
\(\Leftrightarrow x=\frac{11}{15}:2\)
\(\Leftrightarrow x=\frac{11}{30}\)
b) \(4\left(\frac{1}{3}-3\right)+\frac{1}{2}=\frac{5}{6}+x\)
\(\Leftrightarrow\frac{-61}{6}=\frac{5}{6}+x\)
\(\Leftrightarrow x=\frac{-61}{6}-\frac{5}{6}\)
\(\Leftrightarrow x=\frac{-66}{6}=-11\)
Tìm x
\(\frac{5}{2}-\left(\frac{3}{2}-2\frac{1}{3}+x\right)=\frac{8}{15}-\left(\frac{1}{4}-\frac{7}{10}\right)\)
\(1\frac{2}{3}-1\frac{3}{5}+x=\frac{2}{5}-\left|\frac{3}{4}-\frac{7}{8}\right|\)
\(2-\left(\frac{2}{3}-3\frac{1}{4}+x\right)=1\left|\frac{1}{6}-\frac{13}{12}\right|\)
tìm x:
\(|x+\frac{1}{3}|+\frac{4}{5}=|\left(-3,2\right)+\frac{2}{5}|+\left(27-\frac{3}{5}\right)\left(27-\frac{3^2}{7}\right)\left(27-\frac{3^3}{7}\right)...\left(27-\frac{3^{2010}}{2014}\right)\)
Bài 1 : Tìm x biết :
a, \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
b, \(\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
c,\(\left|\frac{7}{5}x+\frac{2}{3}\right|=\left|\frac{4}{3}x-\frac{1}{4}\right|\)
Bài 2 : Tìm x biết :
a, | 2x - 5 | = x +1
b, | 3x - 2 | -1 = x
c, | 3x - 7 | = 2x + 1
d, | 2x-1 | +1 = x
1a) \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\\frac{3}{2}x+\frac{1}{2}=1-4x\end{cases}}\)
=> \(\orbr{\begin{cases}-\frac{5}{2}x=-\frac{3}{2}\\\frac{11}{2}x=\frac{1}{2}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{1}{11}\end{cases}}\)
b) \(\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=>\(\left|\frac{5}{4}x-\frac{7}{2}\right|=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\orbr{\begin{cases}\frac{5}{4}x-\frac{7}{2}=\frac{5}{8}x+\frac{3}{5}\\\frac{5}{4}x-\frac{7}{2}=-\frac{5}{8}x-\frac{3}{5}\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{5}{8}x=\frac{41}{10}\\\frac{15}{8}x=\frac{29}{10}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c) TT
a, \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\-\frac{3}{2}x-\frac{1}{2}=4x-1\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}-4x=-1\\-\frac{3}{2}x-\frac{1}{2}-4x=-1\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{3}{5}\\x=\frac{1}{11}\end{cases}}\)
\(b,\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=> \(\left|\frac{5}{4}x-\frac{7}{2}\right|-0=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\frac{\left|5x-14\right|}{4}=\frac{\left|25x+24\right|}{40}\)
=> \(\frac{10(\left|5x-14\right|)}{40}=\frac{\left|25x+24\right|}{40}\)
=> \(\left|50x-140\right|=\left|25x+24\right|\)
=> \(\orbr{\begin{cases}50x-140=25x+24\\-50x+140=25x+24\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c, \(\left|\frac{7}{5}x+\frac{2}{3}\right|=\left|\frac{4}{3}x-\frac{1}{4}\right|\)
=> \(\orbr{\begin{cases}\frac{7}{5}x+\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\\-\frac{7}{5}x-\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{55}{4}\\x=-\frac{25}{164}\end{cases}}\)
Bài 2 : a. |2x - 5| = x + 1
TH1 : 2x - 5 = x + 1
=> 2x - 5 - x = 1
=> 2x - x - 5 = 1
=> 2x - x = 6
=> x = 6
TH2 : -2x + 5 = x + 1
=> -2x + 5 - x = 1
=> -2x - x + 5 = 1
=> -3x = -4
=> x = 4/3
Ba bài còn lại tương tự