Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 1 2018 lúc 15:18

Đáp án D

Lê Duy Thanh
Xem chi tiết
Linh Bùi
Xem chi tiết
Nguyễn Ngọc Lộc
19 tháng 2 2021 lúc 18:42

a, - Xét phương trình hoành độ giao điểm :\(x^2=\left(m-2\right)x-m+3\)

\(\Leftrightarrow x^2-\left(m-2\right)x+m-3=0\left(I\right)\)

\(\Delta=b^2-4ac=\left(m-2\right)^2-4\left(m-3\right)\)

\(=m^2-4m+4-4m+12=m^2-8m+16=\left(m-4\right)^2\)

- Để P cắt d tại 2 điểm phân biệt <=> PT ( I ) có 2 nghiệm phân biệt .

<=> \(\Delta>0\)

\(\Leftrightarrow\left(m-4\right)^2>0\)

\(\Leftrightarrow m\ne4\)

Vậy ...

b, Hình như đề thiếu giá trị của cạnh huỳnh hay sao á :vvvv

 

Nguyễn Lê Phước Thịnh
19 tháng 2 2021 lúc 21:53

a) Phương trình hoành độ giao điểm là: 

\(x^2=\left(m-2\right)x-m+3\)

\(\Leftrightarrow x^2-\left(m-2\right)x+m-3=0\)

\(\Delta=\left(m-2\right)^2-4\cdot\left(m-3\right)=m^2-4m+4-4m+12=m^2-8m+16\)

Để (d) cắt (P) tại hai điểm phân biệt thì \(\Delta>0\)

\(\Leftrightarrow m^2-8m+16>0\)

\(\Leftrightarrow\left(m-4\right)^2>0\)

mà \(\left(m-4\right)^2\ge0\forall m\)

nên \(m-4\ne0\)

hay \(m\ne4\)

Vậy: khi \(m\ne4\) thì (d) cắt (P) tại hai điểm phân biệt

Nguyễn Thị Quỳnh Trang
Xem chi tiết
HaNa
2 tháng 5 2023 lúc 11:50

Phương trình đường thẳng AB: \(4x+3y+12=0\)

Diện tích tam giác ABC nhỏ nhất khi khoảng cách từ điểm C đến AB nhỏ nhất.

\(d\left(C;AB\right)=\dfrac{\left|4.\dfrac{c^2}{4}+3c+12\right|}{5}=\dfrac{1}{5}.\left|\left(c+\dfrac{3}{2}\right)^2+\dfrac{39}{4}\right|\ge\dfrac{39}{20}\)

Dấu "=" xảy ra khi và chỉ khi \(c=-\dfrac{3}{2}\) => \(C\left(\dfrac{9}{16};-\dfrac{3}{2}\right)\)

❤Hana

Phùng Đức Hậu
Xem chi tiết
Nguyễn Ngọc Lộc
9 tháng 5 2021 lúc 9:26

a, - Thay tọa độ hai điểm xA, xB vào (P) ta được : \(\left\{{}\begin{matrix}y_A=2\\y_B=\dfrac{1}{2}\end{matrix}\right.\)

=> Tọa độ 2 điểm A, B lần lượt là : \(\left(2;2\right),\left(-1;\dfrac{1}{2}\right)\) .

b, - Gọi phương trình đường thẳng AB có dạng : y = ax + b .

- Thay tọa độ A, B vào phương trình ta được hệ : \(\left\{{}\begin{matrix}2a+b=2\\-a+b=\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=1\end{matrix}\right.\)

- Thay lại a, b vào phương trình ta được : \(y=\dfrac{1}{2}x+1\)

Vậy ...

Anh Thư ctue :))
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 4 2023 lúc 8:41

a: PTHĐGĐ là:

x^2+mx-m-2=0(1)

Khi m=2 thì (1) sẽ là

x^2+2x-2-2=0

=>x^2+2x-4=0

=>\(\left[{}\begin{matrix}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=6-2\sqrt{5}\\y=6+2\sqrt{5}\end{matrix}\right.\)

b: Δ=m^2-4(-m-2)

=m^2+4m+8

=(m+2)^2+4>0 với mọi x

=>(d) luôn cắt (P) tại hai điểm phân biệtx

x1^2+x2^2=7

=>(x1+x2)^2-2x1x2=7

=>(-m)^2-2(-m-2)=7

=>m^2+2m+4-7=0

=>m^2+2m-3=0

=>m=-3 hoặc m=1

tranthuylinh
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 7 2021 lúc 17:26

Phương trình hoành độ giao điểm:

\(x^2-mx+m-3=0\) (1)

Để d cắt (P) tại 2 điểm pb \(\Rightarrow\) (1) có 2 nghiệm pb

\(\Rightarrow\Delta=m^2-m+3>0\) (luôn đúng)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-3\end{matrix}\right.\)

\(x_1^2+x_2^2=17\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=17\)

\(\Leftrightarrow m^2-2\left(m-3\right)=17\)

\(\Leftrightarrow m^2-2m-11=0\Rightarrow m=1\pm2\sqrt{3}\)

Nguyễn Thị Ánh Dương
Xem chi tiết
duywwf
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 5 2023 lúc 22:46

1: f(2)=2^2=4

=>A thuộc (P)

2: bạn bổ sung lại đề đi bạn

Vương Thiên Tử
Xem chi tiết
Võ Hồng Phúc
12 tháng 10 2020 lúc 15:46

Đỉnh của parabol là \(\frac{-\Delta}{4a}\) ta có

\(\left\{{}\begin{matrix}\frac{-\Delta}{4a}=-25\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\24a+c=0\\2a+b=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4a^2-4ac=100a\\24a+c=0\\b=-2a\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-c=25\\24a+c=0\\b=-2a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-2\\c=-24\end{matrix}\right.\)

\(\Rightarrow y=x^2-2x-24\)

Khách vãng lai đã xóa