cho tg ABC vuog tai A, AH vuong BC tai H, tia phan giac cua HAC cat BC tai D, E la diem tren canh AB sao cho BE=BH. CM EH song song AD
MỌI NGƯỜI GIÚP GIÙM MÌNH NHÉ MÌNH ĐAG CẦN GẤP
Cho tam giac ABC vuong tai A, ve AH vuong goc BC tai H. Tia phan giac cua goc HAC cat AC tai D, E la diem tren canh AB sao cho BE bang BH. Chung minh EH song song AD
cho tg ABC vuông tại A vẽ AH vuông goc vs BCtai H tia pg cua goc HAC cat BC tai D,E la diem tren canh AB sao cho BE=BH cm AH^2=BH*CHcho tg ABC vuông tại A vẽ AH vuông goc vs BCtai H tia pg cua goac HAC cat BC tai D,E la diem tren canh AB sao cho BE=BH cm AH^2=BH*CH
cho tam giac ABC vuong tai A(AB<AC). Tia phan giac cua goc B cat AC o E. TRen BC lay diem d sao cho BD=BA. Duong thang DE at duong thang AB tai F.
a, CM ED vuong gic voi BC
b,CMR tam giac BCF can tai b
c, Goi H la giao diem cua BE va FC. TINH BC biet BH=8cm, FC=12cm
d, CM AD song song voi FC
Cho tam giac abc vuong tai a. Ke ah vuong goc voi bc tai h. Tren tia doi cua tia ha lay diem d sao cho ha=hd.
a) chung minh tam giac ahd=tam giac dhc
b)tren tia dc lay diem k sao cho c la trung diem cua dk. Chung minh ak||bc
c) tu c ke duong thang song song voi ab cat ak tai m. Doan thang bm cat ac tai q. Chung minh am+cm>2mq
cho tam giac ABC vuong tai A co goc B=60 do. Tia phan giac cua goc B cat AC tai E. Ke EH vuong goc voi BC(H thuoc BC).
a)CMR: tam giac ABE= HBE.
b)CMR: HB=HC.
c) Tu H ke duong thang song song vs Be cat AC tai K. CM tam giac EHK la tam giac deu.
d) Goi I la giao diem cua BA va HE. CM IE>EH
a) Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)(BE là tia phân giác của \(\widehat{ABC}\), H∈BC)
Do đó: ΔABE=ΔHBE(cạnh huyền-góc nhọn)
b) Ta có: ΔABC vuông tại A(gt)
⇒\(\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)
\(\Rightarrow\widehat{ACB}=90^0-\widehat{ABC}=90^0-60^0=30^0\)
Ta có: BE là tia phân giác của \(\widehat{ABC}\)(gt)
\(\Rightarrow\widehat{ABE}=\widehat{CBE}=\frac{\widehat{ABC}}{2}=\frac{60^0}{2}=30^0\)
Xét ΔEBC có \(\widehat{ECB}=\widehat{EBC}\left(=30^0\right)\)
nên ΔEBC cân tại E(định lí đảo của tam giác cân)
⇒EB=EC
Xét ΔEBH vuông tại H và ΔECH vuông tại H có
EB=EC(cmt)
EH chung
Do đó: ΔEBH=ΔECH(cạnh huyền-cạnh góc vuông)
⇒HB=HC(hai cạnh tương ứng)
c) Ta có: \(\widehat{BEC}\) là góc ngoài tại đỉnh E của ΔABE(EA và EC là hai tia đối nhau)
nên \(\widehat{BEC}=\widehat{BAE}+\widehat{ABE}\)(định lí góc ngoài của tam giác)
\(\Rightarrow\widehat{BEC}=90^0+30^0=120^0\)
Ta có: ΔEBH=ΔECH(cmt)
⇒\(\widehat{BEH}=\widehat{CEH}\)(hai góc tương ứng)
mà \(\widehat{BEH}+\widehat{CEH}=\widehat{BEC}\)(tia EH nằm giữa hai tia EB,EC)
nên \(\widehat{BEH}=\widehat{CEH}=\frac{\widehat{BEC}}{2}=\frac{120^0}{2}=60^0\)
\(\Leftrightarrow\widehat{KEH}=60^0\)
Ta có: HK//BE(gt)
⇒\(\widehat{BEH}=\widehat{KHE}\)(hai góc so le trong)
mà \(\widehat{BEH}=60^0\)(cmt)
nên \(\widehat{KHE}=60^0\)
Xét ΔKHE có
\(\widehat{KEH}=60^0\)(cmt)
\(\widehat{KHE}=60^0\)(cmt)
Do đó: ΔKHE đều(dấu hiệu nhận biết tam giác đều)
d) Xét ΔAEI vuông tại A có EI là cạnh huyền(EI là cạnh đối diện với \(\widehat{EAI}=90^0\))
nên EI là cạnh lớn nhất trong ΔAEI(trong tam giác vuông, cạnh huyền là cạnh lớn nhất)
hay EI>EA
mà EA=EH(ΔBAE=ΔBHE)
nên IE>EH(đpcm)
cho tam giac abc vuog tai a (ab<ac). tren canh bc lay diem h sao cho ba=bh.qua h ke duong thag vuong goc vs bc va cat ac,ba lan luot tai e,f
a. cm ea=eh
b. cm 2 tam giác aef=hec
c. cm tam giac efc la tam giac can tai e
d.cho i la trung diem cua fc,cm b,e,i thang hang
cho tam giac ABC v uong tai A (AB < AC ) , ke AH vuong goc voi BC tai H . tren canh AC lay diem I sao cho AH =AI . qua I ke duong thang vuong goc voi A C , cat BC tai D
a, CMR : tam giac AHD = tam giac AID va` AD la tia phan giac cua ∠HAC
b, tia ID cat tia AH tai M . CMR △MCD can
c, go.i N la` trung diem cua MC . CMR AN,MI,BC do^`ng quy
a: Xét ΔAHD vuông tại H và ΔAID vuông tại I có
AD chung
AH=AI
=>ΔAHD=ΔAID
=>góc HAD=gócIAD
=>AD là phân giác của góc HAI
b: Xét ΔDHM vuông tại H và ΔDIC vuông tại I có
DH=DI
góc HDM=góc IDC
=>ΔDHM=ΔDIC
=>DM=DC
=>ΔDMC cân tại D
c: AH+HM=AM
AI+IC=AC
mà AH=AI và HM=IC
nên AM=AC
=>ΔAMC cân tại A
mà AN là trung tuyến
nên AN vuông góc MC
Xét ΔCAM có
AN,MI,CH là các đường cao
=>AN,MI,CH đồng quy
Cho tam giac ABC can tai A co AB> BC . ke AH vuong goc BC tai H
a) CM tam giac AHB = tam giac AHC va H la trung diem BC
b) Goi M la trung diem AB . Qua A ke duong thang song song BC , cat tia HM tai D . Gia su AB = 6,5 cm , AD = 2,5 cm . CM AD= BH
va tinhtinh do dai AH ( ve hinh giup mik voi )
cho tam giac abc vuong tai a co goc b bang 60 do tren canh bc lay diem h sao cho hb=ab duong vuong goc voi bc tai h cat ac tai d
a/ cm bd la tia phan giac cua goc adc
b/ chung to tam giac bdc can