Cho tam giác ABC cân tại A.Trên AB lấy điểm M,trên AC lấy điểm N sao cho AM=AN;gọi I là trung điểm của NB và MC:
a,CM:tam giác AMC=tam giác ANB
b,CM:MN song song với BC
c,Gọi D là trung điểm của BC.CM:A,I,D thẳng hàng
a,Xét tam giác ABN và tam giác ACM có :
AM=AN (gt)
Góc A chung
AB=AC(gt)
=> tam giác ABN = tam giác ACM (c-g-c)
b,theo câu a =>AMC^=ANB^(1)
Ta có : AM=AN =>tam giác AMN cân tại A => AMN^=ANM^(2)
Từ 1 và 2 =>MNI^=NMI^(3)
Vì B1^=C1^
B^=C^
=>B^-B1^=C-C1^
=>C2^=B2^(4)
Mặt khác : I1^=I2^(đối đỉnh) (5)
Từ 3 ; 4 và 5 => MNI^+NMI^+I1^=180*=I2^+B2^+C2^(tổng 3 góc của 1 tam giác )
=> MNI^+NMI^ / 2 = B2^+C2^ / 2
=> B2^=MNI^
Vì 2 góc này ở vị trí sole trong và bằng nhau
=> MN // BC
Cho tam giác ABC cân tại A.Trên AB lấy điểm M,trên AC lấy điểm N sao cho AM=AN;gọi I là trung điểm của NB và MC:
a,CM:tam giác AMC=tam giác ANB
b,CM:MN song song với BC
c,Gọi D là trung điểm của BC.CM:A,I,D thẳng hàng
a: Xét ΔAMC và ΔANB có
AM=AN
\(\widehat{MAC}\) chung
AC=AB
Do đó: ΔAMC=ΔANB
b: Ta có: ΔAMC=ΔANB
nên AM=AN
Xét ΔABC có AM/AB=AN/AC
nên MN//BC
c: Xét ΔMBC và ΔNCB có
MB=NC
BC chung
MC=NB
Do đó:ΔMBC=ΔNCB
Suy ra: \(\widehat{ICB}=\widehat{IBC}\)
hay ΔIBC cân tại I
=>IB=IC
hay I nằm trên đường trung trực của BC(1)
Ta có: AB=AC
nên A nằm trên đường trung trực của BC(2)
Ta có: DB=DC
nên D nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,I,D thẳng hàng
cho tam giác ABC cân tại A.Trên cạnh AB lấy điểm M. Trên tia đối của tia CA lấy điểm N sao cho AM+AN=2AB.CMR:a, BM=CN b,BC cắt MN tại trung điểm của MN
cho tam giác ABC cân tại A.Trên cạnh AB lấy điểm M. Trên tia đối của tia CA lấy điểm N sao cho BM=CN.CMR
a)AM+AN=2AB
ĐANG CẦN GẤP!!
? 2AB=AB+AC(cân)
AM<AB
AN<AC Sao bằng được sai đề r
cho tam giác abc cân tại a trên ab lấy điểm m ac lấy điểm n sao cho am=an tam giác amn là tam giác gì vì sao,cm:mn//bc
Tam giác AMN có: AM = AN
=> tgiac AMN là tam giác cân
=> \(\widehat{AMN}=\widehat{ANM}=\frac{180^0-\widehat{A}}{2}\) (1)
Tgiac ABC cân tại A
=> \(\widehat{ABC}=\widehat{ACB}=\frac{180^0-\widehat{A}}{2}\) (2)
Từ (1) và (2) suy ra: \(\widehat{AMN}=\widehat{ABC}\)
mà 2 góc này đồng vị
=> MN // BC
Cho tam giác ABC vuông cân tại A.Trên cạnh AB lấy điểm M ,trên tia đối của tia AC lấy điểm N sao cho AM=AN.Chứng minh:
a,góc ABN=góc ACM
b,BN vuông góc CM
cho tam giác abc cân tại a trên ab lấy điểm m ac lấy điểm n sao cho am=an tam giác amn là tam giác gì vì sao,cm:mn//bc
Cho tam giác ABC cân tại A.trên cạnh ab và ac lấy m và n sao cho am=an. cm bc+mn<2bn
cho tam giác ABC vuông cân tại A. Trên cạnh AB lấy điểm M, trên tia đối của tia AC lấy điểm N sao cho AM = AN. CMR: CM vuông góc với BN
Kẻ tia NM cắt BC tại H
có AM=AN và góc BAC=90 => tam giác AMN vuông cân tại A
=> góc HNA=45
do tam giác ABC vuông cân => góc ACB=45
tam giác HNC có góc HNA+ACB=90
=> tam giác HNC vuông tại H
=> NH vuông góc BC
do tam giác ABC vuông tại A => BA vuông góc NC
mà NH và AB cắt nhau tại M
xét tam giác BNC có NH và BA là hai đường cao cắt nhau tại M
=> M là trực tâm tam giác BNC
=> CM vuông góc BN