Tìm \(f\left(x\right);g\left(x\right)\) các hệ số nguyên dương
\(\frac{f\left(\sqrt{2}+\sqrt{7}\right)}{g\left(\sqrt{2}+\sqrt{7}\right)}=\sqrt{2}\)
cho hàm số \(f\left(x\right)=2x^2+1\). đặt \(y=f\left(x\right)-f'\left(x\right)\). tìm x để \(y'\left(x\right)=0\)?
\(f'\left(x\right)=4x\Rightarrow y=2x^2+1-4x\)
\(y'\left(x\right)=4x-4=0\Rightarrow x=1\)
Tìm tất cả các hàm số \(f:\left(0;+\infty\right)\rightarrow\left(0;+\infty\right)\) thỏa mãn
\(f\left(x+f\left(y\right)+y\right)=f\left(2x\right)+f\left(y\right),\forall x,y\in\left(0;+\infty\right)\)
cho hàm số \(y=f\left(x\right)=-x^2+4x+5\)
tìm m để
\(f\left(\left|x\right|\right)-\left(m+1\right)\left|f\left(x\right)\right|+m=0\) có 8 nghiệm phân biệt
tìm a, b, c để hso \(f\left(x\right)=ax^2+bx+c\) có đạo hàm \(f'\left(x\right)\) thỏa mãn \(f\left(x\right)+\left(x-1\right)f'\left(x\right)=3x^2\) voi mọi x thuoc R
\(f'\left(x\right)=2ax+b\)
\(f\left(x\right)+\left(x-1\right)f'\left(x\right)=ax^2+bx+c+\left(x-1\right)\left(2ax+b\right)\)
\(=3ax^2+\left(2b-2a\right)x+c-b\)
Yêu cầu bài toán thỏa mãn khi: \(\left\{{}\begin{matrix}3a=3\\2b-2a=0\\c-b=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c=1\)
f:\(R^+\rightarrow R^+\) thỏa f(1)=\(\dfrac{1}{2}\) và f(x.y)=\(f\left(x\right)\).\(f\left(\dfrac{3}{y}\right)\) +\(f\left(y\right)\).\(f\left(\dfrac{3}{x}\right)\) \(\forall x,y\in R^+\) .Tìm f
Cho f(x+y)=f(x)+f(y)
Tìm tất cả các hàm số f: R --> R thoả mãn : (Với mọi x,y thuộc R)
\(f\left(x^3-y^3\right)=xf\left(x^2\right)-yf\left(y^2\right)\)
\(f\left(x^5+y^5+y\right)=x^3f\left(x^2\right)+y^3f\left(y^2\right)+f\left(y\right)\)
@Akai Haruma @Nguyễn Việt Lâm
Giúp em với ạ, em cảm ơn
Bài 1:
Cho $y=0$ thì: $f(x^3)=xf(x^2)$
Tương tự khi cho $x=0$
$\Rightarrow f(x^3-y^3)=xf(x^2)-yf(y^2)=f(x^3)-f(y^3)$
$\Rightarrow f(x-y)=f(x)-f(y)$ với mọi $x,y\in\mathbb{R}$
Cho $x=0$ thì $f(-y)=0-f(y)=-f(y)$
Cho $y\to -y$ thì: $f(x+y)=f(x)-f(-y)=f(x)--f(y)=f(x)+f(y)$ với mọi $x,y\in\mathbb{R}$
Đến đây ta có:
$f[(x+1)^3+(x-1)^3]=f(2x^3+6x)=f(2x^3)+f(6x)$
$=2f(x^3)+6f(x)=2xf(x^2)+6f(x)$
$f[(x+1)^3+(x-1)^3]=f[(x+1)^3-(1-x)^3]$
$=(x+1)f((x+1)^2)-(1-x)f((1-x)^2)$
$=(x+1)f(x^2+2x+1)+(x-1)f(x^2-2x+1)$
$=(x+1)[f(x^2)+2f(x)+f(1)]+(x-1)[f(x^2)-2f(x)+f(1)]$
$=2xf(x^2)+4f(x)+2xf(1)$
Do đó:
$2xf(x^2)+6f(x)=2xf(x^2)+4f(x)+2xf(1)$
$2f(x)=2xf(1)$
$f(x)=xf(1)=ax$ với $a=f(1)$
Cho f(x+y)=f(x)+f(y)
Tìm tất cả các hàm số f: R --> R thoả mãn : (Với mọi x,y thuộc R)
\(f\left(x^3-y^3\right)=xf\left(x^2\right)-yf\left(y^2\right)\)
\(f\left(x^5-y^5+xy\right)=x^3f\left(x^2\right)-y^3f\left(y\right)+f\left(xy\right)\)
Em cảm ơn ạ !!!
\(f\left(x^5+y^5+y\right)=x^3f\left(x^2\right)+y^3f\left(y^2\right)+f\left(y\right)\)
Sửa lại đề câu 2 !!
\(y=f\left(x\right)=\left\{x\right\}\) với \(x\in Q\)
a ) Tìm \(f\left(5\right);f\left(2\frac{1}{6}\right),f\left(-7,4\right)\)
b ) Tìm x để \(f\left(x\right)=0\)
Cho hàm số \(y=f\left(x\right)=x^2-4x+3\). Tìm m nguyên sao cho \(f^2\left(\left|x\right|\right)+\left(m-2\right)f\left(\left|x\right|\right)+m-3=0\) có 6 nghiệm phân biệt
Cho \(f\left(x\right)=x^3-4x+1\).F(1)=3.Tìm F(5)
Cho \(f\left(x\right)=\dfrac{1}{x-1}\) và F(2)=1.Tìm F(x).