Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lan Anh Nguyễn
Xem chi tiết
Hoàng Phúc
18 tháng 3 2016 lúc 20:25

Theo t/c dãy tỉ số=nhau:

\(\frac{a+b}{b+3}=\frac{3+d}{d+a}=\frac{a+b+3+d}{b+3+d+a}=1\)

=>a+b=b+3

=>a=3(cùng bớt đi b)

Vậy a=3

Long Vũ
28 tháng 3 2016 lúc 18:06

theo tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a+b}{b+3}=\frac{3+d}{d+a}=\frac{a+b+3+d}{b+3+d+a}\)(hai vế trên đều giống nhau)

=>\(\frac{a+b+3+d}{b+3+d+a}=1\)

<=>a+b=b+3

=>a=3 (vì b=b cùng bớt b)

Nguyễn Lam Mỹ
21 tháng 8 2020 lúc 20:33

tại sao \(\frac{a+b}{b+3}\)=\(\frac{3+d}{d+a}\)=\(\frac{a+b+3+d}{b+3+d+a}\)

Khách vãng lai đã xóa
zZz Phan Cả Phát zZz
Xem chi tiết
Hoàng Phúc
18 tháng 3 2016 lúc 20:18

Theo t/c dãy tỉ số=nhau:

\(\frac{a+b}{b+3}=\frac{3+d}{d+a}=\frac{a+b+3+d}{b+3+d+a}=1\)

=>a+b=b+3

=>a=3(cùng bớt đi b)

Vậy a=3 thỏa mãn

Nguyễn khánh toàn
Xem chi tiết
Trương Ngọc Ánh
Xem chi tiết
Đức Anh 2k9
8 tháng 8 2018 lúc 17:08

b^2=ac= >a/b=b/c ; c^3=bd= >b/c=c/d

=> a/b=b/c=c/d= >a^3/b^3=b^3/c^3=c^3/d^3=(a^3+b^3+c^3)/(b^3+c^3+d^3) 

mà a^3/b^3=a/b.a/b.a/b=a/b.b/c.c/d=a/b

nên (a^3+b^3+c^3)/(b^3+c^3+d^3)=a/b

Nguyễn Ngọc Ánh
Xem chi tiết
Nguyen Dieu Thao Ly
Xem chi tiết
Nguyen Dieu Thao Ly
26 tháng 10 2016 lúc 21:11

mọi người ơi , giúp em với , em sắp đi học rồi , mọi người giúp em với

Bùi anh tuấn
Xem chi tiết
My Love bost toán
22 tháng 11 2018 lúc 19:09

Câu 1 

Ta có : \(\frac{a}{b}=\frac{c}{d}=>\left(\frac{a}{b}+1\right)=\left(\frac{c}{d}+1\right)\left(=\right)\frac{a+b}{b}=\frac{c+d}{d}\)

=> ĐPCM

Câu 2

Ta có \(\frac{a}{b}=\frac{c}{d}=>\frac{b}{a}=\frac{d}{c}=>\left(\frac{b}{a}+1\right)=\left(\frac{d}{c}+1\right)\left(=\right)\frac{b+a}{a}=\frac{d+c}{c}=>\frac{a}{b+a}=\frac{c}{d+c}\)

=> ĐPCM

Câu 3

My Love bost toán
22 tháng 11 2018 lúc 19:20

Câu 3

Ta có \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(=) (a+b).(c-d)=(a-b).(c+d)(=)ac-ad+bc-bd=ac+ad-bc-bd(=)-ad+bc=ad-bc(=) bc+bc=ad+ad(=)2bc=2ad(=)bc=ad=> \(\frac{a}{b}=\frac{c}{d}\)

=> ĐPCM

Câu 4 

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(=>\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Ta có \(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\left(1\right)\)

Lại có \(\frac{a^2+c^2}{b^2+d^2}=\frac{b^2k^2+c^2k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)

Từ (1) và (2) => ĐPCM

Jctdhsdtf
23 tháng 11 2018 lúc 20:05

Mày là thằng anh tuấn lớp 7c trường THCS yên lập đúng ko 

ta thi hong hai Tathpthu...
Xem chi tiết
Soviet Anthem
Xem chi tiết
bach bop
Xem chi tiết