Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặng Anh Tuấn
Xem chi tiết
Hoàng Thị Ngọc Anh
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 3 2023 lúc 4:45

Do \(\left\{{}\begin{matrix}a\ge0\\b\ge1\\a+b+c=5\end{matrix}\right.\) \(\Rightarrow c\le4\)

\(\Rightarrow2\le c\le4\Rightarrow\left(c-2\right)\left(c-4\right)\le0\Rightarrow c^2\le6c-8\)

\(0\le a\le1< 6\Rightarrow a\left(a-6\right)\le0\Rightarrow a^2\le6a\)

\(1\le b\le2< 5\Rightarrow\left(b-1\right)\left(b-5\right)\le0\Rightarrow b^2\le6b-5\)

Cộng vế:

\(a^2+b^2+c^2\le6\left(a+b+c\right)-13=17\)

\(A_{max}=17\) khi \(\left(a;b;c\right)=\left(0;1;4\right)\)

dia fic
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 1 2021 lúc 11:33

\(Q=\dfrac{2-\dfrac{c}{a}-\dfrac{2b}{a}+\left(\dfrac{b}{a}\right)\left(\dfrac{c}{a}\right)}{1-\dfrac{b}{a}+\dfrac{c}{a}}=\dfrac{2-mn+2\left(m+n\right)-mn\left(m+n\right)}{1+m+n+mn}\)

\(Q=\dfrac{\left(2-mn\right)\left(m+n+1\right)}{\left(m+1\right)\left(n+1\right)}\ge\dfrac{\left[8-\left(m+n\right)^2\right]\left(m+n+1\right)}{\left(m+n+2\right)^2}\)

Đặt \(m+n=t\Rightarrow0\le t\le2\)

\(Q\ge\dfrac{\left(8-t^2\right)\left(t+1\right)}{\left(t+2\right)^2}-\dfrac{3}{4}+\dfrac{3}{4}=\dfrac{\left(2-t\right)\left(4t^2+15t+10\right)}{4\left(t+2\right)^2}+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu "=" xảy ra khi \(t=2\) hay \(m=n=1\)

Kaori Miyazono
Xem chi tiết
Nguyễn Tuấn Minh
3 tháng 5 2017 lúc 20:39

Ta có

(a+1)+(b+10)+(c+2014)+(d+2017)\(\le\) 4(d+2017) ( phần này tự lập luận nhé, cũng dễ mà)

=> (a+b+c+d)+(1+10+2014+2017)\(\le\) 4(d+2017)

=> 4042+4042\(\le\) 4(d+2017)

=>8084\(\le\) 4(d+2017)

=> \(2021\le d+2017\)

=> \(4\le d\)

Vậy GTNN của d là 4

Nhok_Lạnh_Lùng
3 tháng 5 2017 lúc 20:05

k cho mình nhé bạn bạn k mình 1 k mình k bạn 3 k nhé

pro
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 3 2021 lúc 16:03

\(\Leftrightarrow ab^2+bc^2+ca^2\ge a^2b+b^2c+c^2a\)

\(\Leftrightarrow\left(c^2b-abc-b^2c+ab^2\right)+\left(ca^2+abc-ac^2-a^2b\right)\ge0\)

\(\Leftrightarrow b\left(c^2-ac-bc+ab\right)-a\left(c^2-ac-bc+ab\right)\ge0\)

\(\Leftrightarrow\left(b-a\right)\left(c^2-ac-bc+ab\right)\ge0\)

\(\Leftrightarrow\left(b-a\right)\left(c-b\right)\left(c-a\right)\ge0\) (luôn đúng do \(c\ge b\ge a>0\))

BÙI VĂN LỰC
Xem chi tiết
Vô danh đây vip
Xem chi tiết
Phan Hoàng Chí Dũng
20 tháng 2 2017 lúc 11:43

xcnhbhjdfb chjb

jckxb nxcnmrehjvsbn

cbjdbfvcm bjkdfbgfmjn

Vô danh đây vip
20 tháng 2 2017 lúc 11:44

ban biet giai ko

tien123
20 tháng 2 2017 lúc 11:44

cac tiensadfuhdfifbhkdsfsgjfdh

gfjhhgjhffggggggggggggggggggggggggggggggh

Đào Thu Hoà
Xem chi tiết
Lê Nguyễn Minh Châu
Xem chi tiết