Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Tài Bảo Châu
Xem chi tiết
T.Ps
1 tháng 8 2019 lúc 9:20

#)Giải :

Ta có : \(\hept{\begin{cases}ax+by=c\\bx+cy=a\\cx+ay=b\end{cases}\Rightarrow ax+by+bx+cy+cx+ay=c+a+b}\)

\(\Rightarrow x\left(a+b+c\right)+y\left(a+c+b\right)=a+b+c\)

\(\Rightarrow\left(x+y-1\right)\left(a+b+c\right)=0\)

\(\Rightarrow a+b+c=0\Rightarrow a+b=-c\)

\(\Rightarrow a^3+b^3+c^3=a^3+3ab\left(a+b\right)+b^3-3ab\left(a+b\right)+c^3\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3\)

\(=\left(-c\right)^3-3ab\left(-c\right)+c^3=3abc\)

\(\Rightarrowđpcm\)

alibaba nguyễn
1 tháng 8 2019 lúc 9:25

Bài giải thiếu trường hợp \(x+y-1=0\) rồi

T.Ps
1 tháng 8 2019 lúc 9:29

#)Góp ý :

alibaba nguyễn hình như đề bài yêu cầu cm thì chỉ cần cm thui là đc chứ ???

Nguyễn Minh Huy
Xem chi tiết
Nguyễn Linh Chi
19 tháng 3 2020 lúc 18:40

\(\hept{\begin{cases}ay+bx=c\\cx+az=b\\bz+cy=a\end{cases}}\)<=> \(\hept{\begin{cases}cay+cbx=c^2\\bcx+abz=b^2\\bz+cy=a\end{cases}}\)<=> \(\hept{\begin{cases}ay+bx=c\left(1\right)\\cay-abz=c^2-b^2\left(2\right)\\bz+cy=a\left(3\right)\end{cases}}\)

hệ gồm (2) và (3)  là hậ phương trình bậc nhất hai ẩn cơ bản . Em làm tiếp

Khách vãng lai đã xóa
Kiều Thị Huyền
Xem chi tiết
Hatsune Miku
Xem chi tiết
Linh
2 tháng 3 2018 lúc 17:56

bn tham khảo trang https://www.slideshare.net/bluebookworm06_03/tng-hp-h-pt

Hatsune Miku
2 tháng 3 2018 lúc 18:03

Ko có bạn ơi :<

Trịnh Hoàng Đông Giang
Xem chi tiết
alibaba nguyễn
31 tháng 3 2017 lúc 19:19

Với a = b = c = 2 thì ta có cả 3 phương trình đều có dạng.

\(x^2-2x+1=0\)

\(\Leftrightarrow x=1\)Vậy trong trường hợp này cả 3 phương trình đều chỉ có 1 nghiệm.

Vậy đề bài sai.

Huỳnh Diệu Bảo
31 tháng 3 2017 lúc 22:15

Nếu xét các trường hợp khác thì sao alibaba ??

alibaba nguyễn
31 tháng 3 2017 lúc 23:16

Ta có

\(\Delta_1+\Delta_2+\Delta_3=a^2+b^2+c^2-12\)

\(\ge2\left(a+b+c\right)-15=12-15=-3\)

Chẳng nói lên được gì hết

Nguyen
Xem chi tiết
Trần Trà My
Xem chi tiết
IS
28 tháng 3 2020 lúc 8:43

hệ phương trình nhận x=1 , y=\(1+\sqrt{3}\)là nghiệm

\(\Leftrightarrow\hept{\begin{cases}a+\left(1+\sqrt{3}\right)b=\sqrt{3}\\1+\left(1+\sqrt{3}\right)a=\sqrt{3}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=\frac{\left(\sqrt{3}-1\right)^2}{2}\\b=\frac{\sqrt{3}-\left(\frac{\sqrt{3}-1}{2}\right)^2}{1+\sqrt{3}}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=\frac{(\sqrt{3}-1)^2}{2}\\b=\frac{2.\sqrt{3}-2}{1+\sqrt{3}}\end{cases}\Leftrightarrow\hept{\begin{cases}a=\frac{\left(\sqrt{3}-1\right)^2}{2}\\b=\frac{2\left(\sqrt{3}-1\right)^2}{2}\end{cases}}}\)

Khách vãng lai đã xóa
Thanh Tâm
Xem chi tiết
Đinh Thị Ngọc Anh
Xem chi tiết
alibaba nguyễn
7 tháng 1 2017 lúc 11:39

\(\hept{\begin{cases}ax+y+z=a^2\left(1\right)\\x+ay+z=3a\left(2\right)\\x+y+az=2\left(3\right)\end{cases}}\)

Lấy (1) + (2) + (3) vế theo vế được

\(\left(2+a\right)\left(x+y+z\right)=a^2+3a+2=\left(a+2\right)\left(a+1\right)\)

Với a = -2 thì

\(0.\left(x+y+z\right)=0\)bạn làm tiếp nhé

Với a # -2 thì

\(x+y+z=a+1\left(4\right)\)

Lấy (4) lần lược - cho (1), (2), (3) thì tìm được x,y,z