Ta có : \(\hept{\begin{cases}ax+by=c\\bx+cy=a\\cx+ay=b\end{cases}}\Rightarrow\left(ax+by\right)+\left(bx+cy\right)+\left(cx+ay\right)=a+b+c\)
\(\Rightarrow\left(x+y\right)\left(a+b+c\right)=a+b+c\)
\(\Rightarrow\left(x+y-1\right)\left(a+b+c\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+y-1=0\\a+b+c=0\end{cases}}\)
Xét \(a+b+c=0\), ta có :
\(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
\(=0\)
\(\Rightarrow a^3+b^3+c^3=3abc\)
Xét \(x+y-1=0\),ta có :
\(x=1-y\)
\(\Rightarrow\hept{\begin{cases}ax+by=c\\bx+cy=a\end{cases}}\Rightarrow\hept{\begin{cases}a-ay+by=c\\b-by+cy=a\end{cases}}\Rightarrow\hept{\begin{cases}\left(b-a\right)y=c-a\\\left(c-b\right)y=a-b\end{cases}}\Rightarrow\frac{b-a}{b-c}=\frac{c-a}{a-b}\)
\(\Rightarrow a^2+b^2+c^2-ab-ac-bc=0\)
\(\Rightarrow a^3+b^3+c^3-3abc=0\Rightarrow a^3+b^3+c^3=3abc\)