Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Việt Hoàng

Cho hệ phương trình \(\hept{\begin{cases}ax+by=c\\bx+cy=a\\cx+ay=b\end{cases}}\) (a;b;c là tham số). Chứng minh rằng điều kiện cần và đủ của hệ phương trình đã cho có nghiệm là:  \(a^3+b^3+c^3=3abc\)

Võ Thạch Đức Tín
3 tháng 9 2018 lúc 20:00

Ta có : \(\hept{\begin{cases}ax+by=c\\bx+cy=a\\cx+ay=b\end{cases}}\Rightarrow\left(ax+by\right)+\left(bx+cy\right)+\left(cx+ay\right)=a+b+c\)

\(\Rightarrow\left(x+y\right)\left(a+b+c\right)=a+b+c\)

\(\Rightarrow\left(x+y-1\right)\left(a+b+c\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+y-1=0\\a+b+c=0\end{cases}}\)

Xét  \(a+b+c=0\), ta có :

\(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

\(=0\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

Xét \(x+y-1=0\),ta có : 

\(x=1-y\)

\(\Rightarrow\hept{\begin{cases}ax+by=c\\bx+cy=a\end{cases}}\Rightarrow\hept{\begin{cases}a-ay+by=c\\b-by+cy=a\end{cases}}\Rightarrow\hept{\begin{cases}\left(b-a\right)y=c-a\\\left(c-b\right)y=a-b\end{cases}}\Rightarrow\frac{b-a}{b-c}=\frac{c-a}{a-b}\)

\(\Rightarrow a^2+b^2+c^2-ab-ac-bc=0\)

\(\Rightarrow a^3+b^3+c^3-3abc=0\Rightarrow a^3+b^3+c^3=3abc\)


Các câu hỏi tương tự
Mỹ Nguyễn ngọc
Xem chi tiết
Minh Triều
Xem chi tiết
Kiều Thị Huyền
Xem chi tiết
Trịnh Hoàng Đông Giang
Xem chi tiết
Mai Quỳnh Anh
Xem chi tiết
KHANH QUYNH MAI PHAM
Xem chi tiết
cbbhdhx
Xem chi tiết
VN in my heart
Xem chi tiết
Trần Trà My
Xem chi tiết