Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cấn Thị Thảo My
Xem chi tiết
D-low_Beatbox
10 tháng 1 2021 lúc 18:07

undefined

 

a, tgABC cân tại A suy ra gócABC=gócACB, AB=AC

AH⊥BC ⇒ gócAHB=gócAHC

Xét △ABH và △ACH có:

gócABC=gócACB,AB=AC,gócAHB=gócAHC (C/m trên)

⇒ △ABH=△ACH (ch-gn)

b, Ta có △ABH=△ACH ➩ gócDAH=gócEAH (2 góc tương ứng)

Xét △DAH và △EAH có

gócDAH=gócEAH (c/m trên), ADH=gócAEH=90độ (DH⊥AB, HE⊥AC)

AH là cạnh chung

⇒ △DAH=△EAH (ch-gn) ⇒ AD=AE (2 cạnh tương ứng)

⇒ △ADE cân tại A

c, △ABC cân tại A ⇒ gócB=\(\dfrac{180độ-gócA}{2}\)

△ADE cân tại A ⇒ gócC=\(\dfrac{180độ-gócA}{2}\)

⇒gócB=gócC , mà 2 góc này nằm ở vị trí đồng vị

⇒ DE//BC

응안 두투이
Xem chi tiết
liem tran duc
5 tháng 5 2022 lúc 16:48

ko biết

Pảo Trâm
Xem chi tiết

1: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

=>HB=HC

=>H là trung điểm của BC

2: Ta có: H là trung điểm của BC

=>\(HB=HC=\dfrac{BC}{2}=\dfrac{12}{2}=6\left(cm\right)\)

ΔAHB vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(HA^2=10^2-6^2=64\)

=>\(HA=\sqrt{64}=8\left(cm\right)\)

3: Xét ΔAHN có

AF là đường cao

AF là đường trung tuyến

Do đó: ΔAHN cân tại A

=>AH=AH

4: Xét ΔAHM có

AE là đường trung tuyến

AE là đường cao

Do đó: ΔAHM cân tại A

=>AM=AH

Ta có: ΔAHN cân tại A

mà AC là đường cao

nên AC là phân giác của góc HAN

=>\(\widehat{HAN}=2\cdot\widehat{HAC}\)

Ta có: ΔAHM cân tại A

mà AB là đường cao

nên AB là phân giác của góc HAM

=>\(\widehat{HAM}=2\cdot\widehat{HAB}\)

Ta có: AM=AH

AH=AN

Do đó: AM=AN

Ta có: \(\widehat{HAM}+\widehat{HAN}=\widehat{MAN}\)

=>\(\widehat{MAN}=2\cdot\left(\widehat{HAB}+\widehat{HAC}\right)\)

=>\(\widehat{MAN}=2\cdot\widehat{BAC}\)

Để A là trung điểm của MN thì AM=AN và góc MAN=180 độ

=>góc MAN=180 độ

=>\(2\cdot\widehat{BAC}=180^0\)

=>\(\widehat{BAC}=90^0\)

Chu Hải Phương
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 2 2022 lúc 10:47

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC
AH chung

Do đó: ΔABH=ΔACH

Suy ra: \(\widehat{BAH}=\widehat{CAH}\)

hay AH là tia phân giác của góc BAC

b: Xét ΔEAH vuông tại E và ΔFAH vuông tại F có

AH chung

\(\widehat{EAH}=\widehat{FAH}\)

Do đó: ΔEAH=ΔFAH

Suy ra: HE=HF

hay ΔHEF cân tại H

c: Xét ΔACK và ΔABK có

AC=AB

\(\widehat{CAK}=\widehat{BAK}\)

AK chung

Do đó: ΔACK=ΔABK

Suy ra: \(\widehat{ACK}=\widehat{ABK}=90^0\)

=>BK\(\perp\)AB

hay BK//EH

//////
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 3 2022 lúc 10:27

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

Do đó: ΔABH=ΔACH

Suy ra: BH=CH

b: BH=CH=6cm

=>AH=8cm

c: Xét ΔAHE có 

AK là đường cao

AK là đường trung tuyến

Do đó: ΔAHE cân tại A

hay AE=AH

d: Xét ΔADH có

AI là đường cao

AI là đườngtrung tuyến

Do đó:ΔADH cân tại A

=>AD=AH=AE

=>ΔADE cân tại A

Tâm Hà
Xem chi tiết
Nguyễn Mai
Xem chi tiết
vũ vinh
Xem chi tiết
Jennie Kim
27 tháng 6 2020 lúc 6:33

a, xét tam giác AHB và tg AHC có : ^AHC = ^AHB = 90

AB = AC do tg ABC cân tại A (gt)

^ABC = ^ACB do tg ABC ... 

=> tg AHB = tg AHC (ch-gn)

b, tg ABC cân tại A (Gt) mà có AH là đường cao   (1)

=> AH đồng thời là đường trung tuyến

=> H là trung điểm của BC 

=> BH = 1/2BC = 6 cm

tg AHB vuông tại H (gt) => AB^2 = AH^2 + HB^2 (ĐL pytago)

AB = 10 (gt)

=> AH = 8 do AH > 0

c,   (1) => AH đồng thời là pg của ^BAC (đl)

=> ^CAH = ^BAH (đn)

có HE // AC (gt) ; ^CAH slt ^AHE => ^CAH = ^AHE (đl)

=> ^BAH = ^AHE 

=> tg AHE cân tại E (dh)

Khách vãng lai đã xóa
Nguyễn Thị Quyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 7 2023 lúc 20:04

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

b: AB=căn 4^2+3^2=5cm

c: Xét ΔABC có

H là trung điểm của BC

HM//AC

=>M là trung điểm của AB

Xét ΔABC có

CM,AH là trung tuyến

CM cắt AH tại G

=>G là trọng tâm