Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Đức Duy
Xem chi tiết
Lê Kim An
Xem chi tiết
Đàm Tùng Vận
Xem chi tiết
Hi Mn
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 1 2023 lúc 12:06

Đặt vế trái BĐT cần chứng minh là P, ta có:

\(\dfrac{ab}{a^2+b^2}+\dfrac{bc}{b^2+c^2}+\dfrac{ca}{c^2+a^2}=\dfrac{1}{c\left(a^2+b^2\right)}+\dfrac{1}{a\left(b^2+c^2\right)}+\dfrac{1}{b\left(c^2+a^2\right)}\)

\(\ge\dfrac{9}{a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)}\ge\dfrac{9}{2\left(a^3+b^3+c^3\right)}\)

\(\Rightarrow P\ge a^3+b^3+c^3+\dfrac{9}{2\left(a^3+b^3+c^3\right)}\ge3\sqrt[3]{\left(\dfrac{a^3+b^3+c^3}{2}\right)^2.\dfrac{9}{2\left(a^3+b^3+c^3\right)}}\)

\(=3\sqrt[3]{\dfrac{9\left(a^3+b^3+c^3\right)}{8}}\ge3\sqrt[3]{\dfrac{27abc}{8}}=\dfrac{9}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Huyền thoại Amaya
Xem chi tiết
Minh  Ánh
12 tháng 11 2016 lúc 20:20

ta có: \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(\Rightarrow\frac{2}{c}=\frac{1}{a}+\frac{1}{b}\)

\(\Rightarrow\frac{2}{c}=\frac{b+a}{ab}\)

\(\Rightarrow2ab=c\left(a+b\right)\)

\(\Rightarrow ab+ab=ac+bc\)

\(\Rightarrow ac-ab=ab-bc\)

\(\Rightarrow a\left(c-b\right)=b\left(a-c\right)\)

\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\)

tíc mình nha

mr. killer
Xem chi tiết
Nguyễn Thiên Dương
Xem chi tiết
trần mai hoa
Xem chi tiết
Phước Nguyễn
27 tháng 11 2015 lúc 21:33

Vì  \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{ab+bc+ac}{abc}=0\Leftrightarrow ab+bc+ac=0\)

Ta có: 

\(a+b+c=1\)

\(\Leftrightarrow\left(a+b+c\right)^2=1\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=1\)

\(\Leftrightarrow a^2+b^2+c^2=1\left(đpcm\right)\)

 

Yeutoanhoc
Xem chi tiết
Trần Minh Hoàng
31 tháng 5 2021 lúc 22:58

Áp dụng bất đẳng thức Holder ta có:

\(\left(\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ca}}+\dfrac{c}{\sqrt{c^2+8ab}}\right)\left(\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ca}}+\dfrac{c}{\sqrt{c^2+8ab}}\right)\left(a\left(a^2+8bc\right)+b\left(b^2+8ca\right)+c\left(c^2+8ab\right)\right)\ge\left(a+b+c\right)^3\).

Do đó ta chỉ cần chứng minh \(\left(a+b+c\right)^3\ge a\left(a^2+8bc\right)+b\left(b^2+8ca\right)+c\left(c^2+8ab\right)\Leftrightarrow3\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge24abc\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\). Đây là một bđt rất quen thuộc

Không Holder thì Svacxo nha :v

Áp dụng BĐT Svacxo ta có :

\(\dfrac{a^2}{a\sqrt{a^2+8bc}}+\dfrac{b^2}{b\sqrt{b^2+8ac}}+\dfrac{c^2}{c\sqrt{c^2+8ab}}\ge\dfrac{\left(a+b+c\right)^2}{a\sqrt{a^2+8bc}+b\sqrt{b^2+8ac}+c\sqrt{c^2+8ab}}\)

Ta có sẽ đi chứng minh :

\(a\sqrt{a^2+8bc}+b\sqrt{b^2+8ac}+c\sqrt{c^2+8ab}\le\left(a+b+c\right)^2\)

Thật vậy theo Bunhiacopxki có :

\(a\sqrt{a^2+8bc}+b\sqrt{b^2+8ac}+c\sqrt{c^2+8ab}=\sqrt{a}\sqrt{a^3+8abc}+\sqrt{b}\sqrt{b^3+8abc}+\sqrt{c}\sqrt{c^3+8abc}\)

\(\le\sqrt{\left(a+b+c\right)\left(a^3+b^3+c^3+24abc\right)}\)

Ta lại đi chứng minh :

\(a^3+b^3+c^3+24abc\le\left(a+b+c\right)^3\)

\(\Leftrightarrow24abc\le3\left(a+b\right)\left(b+c\right)\left(c+a\right)\) ( Đây là BĐT đúng )

Do đó nhân vào ta có đpcm.

 

Vuy năm bờ xuy
31 tháng 5 2021 lúc 23:16

undefined

Loan Trinh
Xem chi tiết