Tìm a,b biết
a.b=768 và ƯCLN(a;b)=8
GIẢI GIÚP MÌNH NHA
tìm a,b ϵN (a<b)biết
a.b=294:ƯCLN(a;b)=7
Lời giải:Do ƯCLN $(a,b)=7$ nên đặt $a=7x; b=7y$ trong đó $x,y$ là các số tự nhiên thỏa mãn ƯCLN $(x,y)=1$
Khi đó:
$ab=294$
$7x.7y=294$
$xy=6$
Vì $a< b$ nên $x< y$. Do đó từ $xy=6$ ta có $(x,y)=(1,6); (2,3)$
$\Rightarrow (a,b)=(7,42); (14, 21)$
tìm a,b thuộc n:
1)a+b=150 và ƯCLN(a,b)=5
2)a.b=768 VÀ ƯCLN(a,b)=8
1) Ta có:
a + b =150
ƯCLN (a, b) = 5
\(\Rightarrow\) a = 5.m trong đó ƯCLN(m, n) = 1 (vì ƯCLN(a,b) = 5)
b = 5.n
\(\Rightarrow\) 5m + 5n = 150
5 (m + n) = 150
\(\Rightarrow\) m + n = \(\frac{150}{5}\) = 30
m | 29 | 23 | 21 | 19 | 17 |
n | 1 | 7 | 9 | 11 | 13 |
a= 5m | 145 | 115 | 105 | 95 | 85 |
b= 5n | 5 | 35 | 45 | 55 | 65 |
Vậy a có thể bằng 145, 115, 105, 95, 85
b có thể bằng 5, 35, 45, 55, 65
2) Ta có:
a . b = 768
ƯCLN(a, b) = 8
\(\Rightarrow\) a = 8 . m trong đó ƯCLN(m; n) = 1 (vì ƯCLN(a,b) = 8)
b = 8 . n
\(\Rightarrow\) 8m . 8n = 768
\(\Rightarrow\) m . n = \(\frac{768}{8^2}\)= 12
m | 12 | 4 |
n | 1 | 3 |
a = 8m | 96 | 32 |
b = 8n | 8 | 24 |
Vậy a bằng 96 và b bằng 8
a bằng 32 và b bằng 24
Tìm 2 số a, b thuộc N, biết
a, a + b = 192 và ƯCLN ( a, b ) = 16
b, a × b = 768 và ƯCLN ( a,b ) = 8
tìm a;b thuộc N,biết:
a.b=768 và ƯCLN(a;b)=8
AI TRẢ LỜI NHANH NHẤT SẼ ĐƯỢC LIKE(CÁC BẠN GIẢI RA CHO MÌNH NHÉ)
c) giả sử a< b
a = 8.a' và b = 8.b' (ƯCLN(a',b) = 1và a'<b')
a.b = 8.a'.8.b' = 768 a'.b' = 768 : 64 =12
a' = 1 và b' =12
hoặc a' = 3 và b' = 4
a = 8 và b = 96
hoặc a= 24 và b = 32
****
giả sử a< b
a = 8.a' và b = 8.b' (ƯCLN(a',b) = 1và a'<b')
a.b = 8.a'.8.b' = 768 a'.b' = 768 : 64 =12
a' = 1 và b' =12
hoặc a' = 3 và b' = 4
a = 8 và b = 96
hoặc a= 24 và b = 32
Tìm a , b \(\in\) N biết:
1) a + b = 150 và ƯCLN(a , b) = 5
2) a . b = 768 và BCNN(a , b) = 8
Ai biết vào giúp đi!!! Trước 4h30 chiều nay đều tick hết á!!!
Lê Yến My
là ước chung lớn nhất và bội chung nhỏ nhất đấy bạn
Chứng minh rằng
a . b = 768 và ƯCLN (a;b) = 8
S= 3 + 32 + 33 + ... + 320 chai hết cho 12 và 120
Tìm hai số tự nhiên a và b (a>b), biết rằng :
a) a=96 và ƯCLN(a,b)=12
b) ƯCLN(a,b)=45 và a=270
c) a+b=120 và ƯCLN(a,b)=12
d) a+b=224 và ƯCLN(a,b)=28
e) a.b=1944 và ƯCLN(a,b)=18
a, b: Bạn xem lại đề.
c.
Vì $ƯCLN(a,b)=12$ và $a>b$ nên đặt $a=12x, b=12y$ với $x,y$ là stn, $x>y$, $(x,y)=1$. Khi đó:
$a+b=12x+12y=120\Rightarrow x+y=10$
Vì $x>y, (x,y)=1$ nên $x,y$ có thể nhận giá trị là:
$(x,y)=(9,1), (7,3)$
$\Rightarrow (a,b)=(108. 12), (84, 36)$
d.
Vì $ƯCLN(a,b)=28$ và $a>b$ nên đặt $a=28x, b=28y$ với $x,y$ là stn, $x>y$, $(x,y)=1$. Khi đó:
$a+b=28x+28y=224$
$\Rightarrow x+y=8$
Vì $x>y$ và $(x,y)=1$ nên $x,y$ có thể nhận các giá trị là:
$(x,y)=(7,1), (5,3)$
$\Rightarrow (a,b)=(196, 28), (140, 84)$
e.
Vì $ƯCLN(a,b)=18$ và $a>b$ nên đặt $a=18x, b=18y$ với $x,y$ là stn, $x>y$, $(x,y)=1$. Khi đó:
$a+b=18x+18y1944$
$\Rightarrow x+y=108$
Với điều kiện $x>y, (x,y)=1$ thì $x,y$ có thể nhận khá nhiều giá trị. Bạn có thể xét từng TH để tính toán nhé.