Cho tam giác ABC cân tại A. Chứng minh;
a) Tam giác ABD = tam giác ADC
b) Gọi G là trọng tâm, chứng minh A, G, D thẳng hàng
Cho tam giác ABC cân tại A có BI và CE là hai đường cao
a) Chứng minh tam giác AIB = AEC
b) chứng minh tam giác AEI cân tại A
c) Chứng minh BEIC là hình thang cân
cho tam giác ABC cân tại A , H là trung điểm BC
a) chứng minh tam giác AHB = tam giác AHC
b) chứng minh AH ⊥ BC
c) chứng minh tam giác AEF cân
Cho tam giác ABC cân tại A và 2 đường trung tuyến BM, CN cắt nhau tại G.
a)Chứng minh Tam giác BNC=Tam giác CMB
b)Chứng minh Tam giác BNC cân tại A
giúp mk nha
a: Xét ΔBNC và ΔCMB có
NB=MC
\(\widehat{NBC}=\widehat{MCB}\)
BC chung
Do đó; ΔBNC=ΔCMB
b: Sửa đề: Cm ΔANM cân tại A
Xét ΔANM có AN=AM
nên ΔANM cân tại A
Cho tam giác ABC có trung tuyến AM đồng thời là đường phân giác. Trên tia AM lấy điểm D sao cho MD = MA. Chứng minh:
a) AB = CD.
b) tam giác ACD cân tại C.
c) Chứng minh tam giác ABC cân tại A.
bài1 Cho tam giác ABC cân tại A .D là điểm trên cạnh ac .đường thẳng qua d song song với AB cắt BC tại E Chứng minh tam giác dec cân
bai2 Cho tam giác ABC có A bằng 80 độ B bằng 50 độ
a chứng minh tam giác ABC cân
B đường thẳng song song với BC cắt tia đối của tia AB tại D cắt tia đối của tia AC tại E Chứng minh tam giác ade cân
bai3 Cho tam giác ABC cân tại A đường thẳng song song với b c cắt các cạnh AB AC lần lượt tại d và e Gọi O là giao điểm của Be và CD Chứng minh
a tam giác ade cân
B tam giác OBC cân
cac bqn lam nhanh giup minh minh dang can gqp
b1 :
DE // AB
=> góc ABC = góc DEC (đồng vị)
góc ABC = góc ACB do tam giác ABC cân tại A (gt)
=> góc DEC = góc ACB
=> tam giác DEC cân tại D (dh)
b2:
a, tam giác ABC => góc A + góc B + góc C = 180 (đl)
góc A = 80; góc B = 50
=> góc C = 50
=> góc B = góc C
=> tam giác ABC cân tại A (dh)
b, DE // BC
=> góc EDA = góc ABC (slt)
góc DEA = góc ECB (dlt)
góc ABC = góc ACB (Câu a)
=> góc EDA = góc DEA
=> tam giác DEA cân tại A (dh)
Cho tam giác ABC cân tại A và hai đường trung tuyến BE và CF cắt nhau tại D.a) Chứng minh tam giác ADE tam giác ADF.b) Chứng minh tam giác BDC cân. c) Chứng minh BC< 4DE.
Cho tam giác ABC vuông tại A. Về phía ngoài tam giác ABC, vẽ tam giác ABD vuông cân tại A, vẽ tam giác ACE vuông cân tại E. Chứng minh rằng tứ giác BDEC là hình thang cân.
Cho tam giác ABC có hai đường trung tuyến BM, CN.
a) Chứng minh nếu tam giác ABC cân tại A thì BM = CN.
b) Ngược lại nếu BM = CN, chứng minh:
i) GB = GC, GN = GM;
ii) BN = CM;
iii) tam giác ABC cân tại A.
cho tam giác ABC cân tại A. Vẽ đường cao BH và CK.BH và CK cắt nhau tại O
a) Chứng minh AO vuông góc với BC.
b) CHo OAB = 30 độ. tam giác ABC là tam giác gì? Vì sao
c) chứng minh tam giác AOB là t giác cân
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB chung
Do đó: ΔAHB=ΔAKC
Suy ra: HB=KC
Xét ΔKBC vuông tại K và ΔHCB vuông tại H có
BC chung
KC=HB
Do đó: ΔKBC=ΔHCB
Suy ra: \(\widehat{OCB}=\widehat{OBC}\)
=>ΔOBC cân tại O
=>OB=OC
mà AB=AC
nên AO là đường trung trực của BC
hay AO\(\perp\)BC
b: Xét ΔAOB và ΔAOC có
AO chung
OB=OC
AB=AC
Do đó ΔAOB=ΔAOC
SUy ra: \(\widehat{OAB}=\widehat{OAC}=30^0\)
=>\(\widehat{BAC}=60^0\)
hay ΔABC đều
c: Đề sai rồi bạn