Cho (O; R) và một điểm A ở ngoài đường tròn sao cho OA = 3R. Từ A vẽ 2 tiếp tuyến AB,
AC đến (O) với B và C là các tiếp điểm.
a) Chứng minh tứ giác OBAC nội tiếp
b) Từ B vẽ đường thẳng song song với AC cắt (O) tại D. Đường thẳng AD cắt đường tròn
tại E và tia BE cắt AC tại F. Chứng minh rằng F là trung điểm của AC
c) Gọi H là giao điểm của BC và OA. Chứng minh rằng HB là tia phân giác của góc EHD.