cho tam giac ABC can tai A. ke duong cao BH. tu mot diem M tren day BC ke MI vuong goc voi AC; MK vuong goc voi AB; MP vuong goc voi BH.
a)c/m MPHI la HCN.
b)c/m: MK+MI=BH
cho tam giac ABC can tai A. ke duong cao BH. tu mot diem M tren day BC ke MI vuong goc voi AC; MK vuong goc voi AB; MP vuong goc voi BH.
a)c/m MPHI la HCN.
b)c/m: MK+MI=BH
a) có BH vuông vs AC ( gt) hay PH vuông vs AC
MI vuông vs AC (gt)
=> PH // MI (1) (2 đường t phân bt cùng vuông góc vs đg t thứ 3 thì chúng // vs nhau)
PM vuông vs BH (gt) hay PM vuông PH
PH vuông vs AC (gt)
=> PM // AC hay PM // HC (2)
từ (1) và (2) => MPHI là HBH ( vì là tứ giác có các cạnh đối //)
mà \(\widehat{HPM}=90^0\)(vì PM vuông vs PH)
=> MPHI là HCN ( vì là HBH có 1 góc vuông)
b) có PM // HC ( vì PM // HI)
=> \(\widehat{PMC}+\widehat{HCM}=180^0\)(2 góc TCP)
mà\(\widehat{PMB}+\widehat{PMC}=180^0\)(2 góc kề bù)
=> \(\widehat{PMB}=\widehat{HCM}\) (3)
tam giác ABC cân tại A => ^B = ^C hay ^KBM = ^HCM (4)
từ (3) và (4) => ^ PMB = ^KBM
xét tam giác KBM vuông tại K
tam g PMB vuông tại P
có BM là cạnh chung
^PMB = ^KBM (cmt)
=> tam g KBM = tam g PMB (ch-gn)
=> KM = PB (2 cạnh tương ứng) (5)
MPHI là HCN (cm câu a) => PH = IM (t/c HCN) (6)
từ (5) và (6) => KM + MI = PB + PH = BH
bai 1co tam giac abc can tai a tren tia doi cua cac tia bc va cb lay hai diem d va e sao cho ce = bd goi m la trung diem cua bc tu b va c ke bh vuong goc voi ad va ck vuong goc voi ae .cm 3 dt bh ck va am cung di qua mot diem
bai 2 cho tam giac abc vuong tai a goc c bang 30 do duong cao ah tren doan hc lay diem d sao cho hd=hb tu c ke ce vuong goc voi ad cmr
a, tam giac abd deu
b,eh song song voi ac
bai 3 cho tam giac abc co goc a = 90 do qua a ke dt d tu b va c ke bd vuong goc voi dt d va ce vuong goc voi dt d tinh do dai de theo bd va ce
bai 4 cho tam giac abc vuong tai a hai duong phan giac bm va cn tu m va n ke mmphay va nnphay vuong goc voi bc cmr goc mphayanphay bang 45 do
cho tam giac ABC can tai A ke BH vuong goc voi AC goi D la mot diem thuoc canh day BC ke DE vuong goc voi AC, DF vuong goc voi AB chung minh rang DE+DF=BH
cho tam giac abc vuong can tai a. goi b la diem tren canh bc, bi la phan giac cua tam giac abd, duong cao im cua tam giac bid cat duong vuong goc voi ac ke tu c tai n. tinh goc ibn
Cho tam giac ABC can tai A. Tren tia doi cua tia BC lay diem D, tren tia doi cua tia CB lay diem E sao cho BD = CE.
a) CM: tam giac ADE can.
b) Goi M la trung diem cua BC. CM: AM la tia phan giac cua goc DAE va AM vuong DE.
c) Tu B ke BH vuong goc AD (H€AD). Tu C ke CK vuong goc AE (K€AE). CM: BH=CK.
d) CM: Ba duong thang AM,BH,CK gap nhau tai mot diem.
Ta có tam giác ABC cân tại A nên góc B=góc C mà góc ABC+ABD=180 độ
góc ACB+ACE=180 độ
=> góc ABD=góc ACE
Xét tam giác ABD và tam giác ACE có
AB=AC (tam giác ABC cân tại A)
góc ABD=góc ACE (cmt)
BD=CE(gt)
=> tam giác ABD=tam giác ACE(c-g-c)
=> AD=AE(cạnh tương ứng)
Vậy tam giác ADE cân và cân tại A
b/ Ta có tam giác ADE là tam giác cân và cân tại A nên góc D=góc E
Xét tam giác AMD và tam giác AME có:
AD=AE(tam giác ADE cân tại A)
góc D=góc E(cmt)
góc AMD=góc AME=90 độ
=> tam giác AMD=tam giác AME(ch-gn)
=> góc DAM=góc EAM(góc tương ứng)
Vậy AM là tia phân giác góc DAE
cho tam giac ABC can o A.Tren canh BC lay diem D, tren tia doi cua tia CB lay diem E sao cho BD=CE.Tu D ke duong thang vuong goc voi BC cat AB o M, tu E ke duong thang vuong goc voi BC cat AC o N.Chung minh:
a)MD=ME
b)MN cat DE o I. Chung minh I la trung diem cua DE
c)Tu C ke duong thang vuong goc voi AC, tu D ke duong thang vuong goc voi AB.Chung cat nhau tai O.Chung minh AO la duong trung truc cua BC
Cho tam giac ABC can tai A duong cao AH ,tu d bat ki tren canh AB ha DE vuong goc voi BC ,e thuoc BC.Tren HC lay diem F sao cho FC = EH.Qua C ke duong q sao cho QC =FH ,tu Qke duong thang vuong goc voi BC tai Qcat AC tai P.CMR :DC=GP va DEG =90do
cho tam giac can ABC co goc A =45do,AB=AC. tu trung diem I cua canh AC ke duong vuong goc voi AC. cat duong thang ac tai M. tren tia doi cua tia AM lay diem N sao cho AM=AN.chung minh goc AMC= ACB.b,tam giac ABM=CAN.c,tam giac MNC vuong can tai A
cho tam giac abc vuong tai A (AB<AC). Ke duong cao AH.
A) TAM GIAC AHB dong dang voi tam giac CAB
B) Tu H ke HE vuong goc voi AB(E THUOC AB). Ke HF vuong goc voi AC ( F thuoc AC) CM AE.AB=AF.AC
C) GOI M LA GIAO DIEM CUA EF VA BC. CM GOC MCE = GOC MFB
a: Xet ΔAHB vuôg tại H và ΔCAB vuông tại A có
góc B chung
=>ΔAHB đồng dạng với ΔCAB
b: Xét ΔAHB vuông tại H có HE là đường cao
nen AE*AB=AH^2
Xét ΔAHC vuông tạiH có HF là đường cao
nên AF*AC=AH^2
=>AE*AB=AF*AC
c: góc MEB=góc AEF=góc AHF=góc MCF
Xét ΔMEB và ΔMCF có
góc MEB=góc MCF
góc M chung
=>ΔMEB đồng dạng với ΔMCF
=>ME/MC=MB/MF
=>ME/MB=MC/MF
=>ΔMEC đồng dạng với ΔMBF
=>góc MCE=góc MFB