Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kagamine Twins
Xem chi tiết
strick
Xem chi tiết
bímậtnhé
5 tháng 9 2018 lúc 15:02

vì tứ giác FMEH có góc F = 90 độ; H = 90 độ; E = 90 độ.

\(\Rightarrow\)góc M = 90 độ

\(\Rightarrow FH//ME ; FM//HE\)

\(\Rightarrow\)tứ giác FMEH là hình chữ nhật 

\(\Rightarrow\)ME=FH

╚»✡╚»★«╝✡«╝
6 tháng 9 2018 lúc 12:19

a ) tứ giác MFHE có :

\(\widehat{MFH}+\widehat{FHE}+\widehat{HEM}+\widehat{EMF}=360^o\)( tính chất tổng các góc trong tứ giác )

hay \(90^o+90^o+90^o+\widehat{EMF}=360^o\)

\(\Rightarrow\widehat{EMF}=360^o-90^o-90^o-90^o\)

\(\Rightarrow\widehat{EMF}=90^o\)

\(\Rightarrow FM\perp ME\left(dhnb\right)\)

mà \(HE\perp ME\left(gt\right)\)

\(\Rightarrow FM//HE\left(\perp\rightarrow//\right)\)

\(\Rightarrow FHEM\)là hình thang

\(\widehat{MFH}=\widehat{EMF}\left(=90^o\right)\)

\(\Rightarrow FHEM\)là hình thang cân

\(\Rightarrow ME=FH\)( tính chất cạnh trong hình thang cân )

b ) kẻ EF

có M là trung điểm của BC ( gt )

\(\Delta ABC\)cân tại A ( gt )

\(\Rightarrow AM\)là đường cao

\(\Rightarrow AM\)cũng là tia phân giác của \(\widehat{BAC}\)

\(\Rightarrow\widehat{BAM}=\widehat{CAE}\)\(hay\widehat{DAM}=\widehat{EAM}\)

xét \(\Delta MAD\)và \(\Delta MCE\)

\(\hept{\begin{cases}\widehat{ADM}=\widehat{AEM}=90^o\\AMchung\\\widehat{DAM}=\widehat{EAM}\left(cmt\right)\end{cases}}\)

\(\Rightarrow\Delta MAD=\Delta MCE\left(ch-gn\right)\)

\(\Rightarrow AD=AE\)( 2 cạnh tương ứng )

xét \(\Delta ADK\)và \(\Delta AEK\)có :

\(\hept{\begin{cases}AMchung\\\widehat{DAK}=\widehat{EAK}\left(cmt\right)\\AD=AE\left(cmt\right)\end{cases}}\)

\(\Rightarrow\Delta ADK=\Delta AEK\left(c-g-c\right)\)

\(\Rightarrow\widehat{AKD}=\widehat{AKE}\)( 2 góc tương ứng )

mà \(\widehat{AKD}+\widehat{AKE}=180^o\left(kb\right)\)

\(\Rightarrow\widehat{AKD}=\widehat{AKE}=\frac{180^o}{2}=90^o\)

\(\Rightarrow AM\perp DK\left(dhnb\right)\)

AM là đường cao \(\Rightarrow AM\perp BC\)

\(\Rightarrow DK//BC\)

\(hayBK//MC\)

\(\Rightarrow MDKC\)là hình thang

╚»✡╚»★«╝✡«╝
7 tháng 9 2018 lúc 12:49

câu b là kẻ KE nhé chứ không phải là FE

Nguyễn Hoàng Minh
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 2 2022 lúc 19:41

\(\left\{{}\begin{matrix}\widehat{MGJ}=\widehat{B}\left(\text{đồng vị}\right)\\\widehat{MJG}=\widehat{C}\left(\text{đồng vị}\right)\end{matrix}\right.\)  \(\Rightarrow\Delta MGJ\sim\Delta ABC\) theo tỉ số \(k_1=\dfrac{GJ}{BC}\)

\(\Rightarrow S_{ABC}.k_1^2=S_{MGJ}\Rightarrow k_1=\sqrt{\dfrac{S_{MGJ}}{S_{ABC}}}=\dfrac{GJ}{BC}\) (1)

Tương tự: \(\dfrac{DM}{BC}=\sqrt{\dfrac{S_{IDM}}{S_{ABC}}}\), mà BDMG là hbh (2 cặp cạnh đối song song)

\(\Rightarrow DM=BG\Rightarrow\dfrac{BG}{BC}=\sqrt{\dfrac{S_{IDM}}{S_{ABC}}}\) (2)

Tương tự: \(\dfrac{CJ}{BC}=\sqrt{\dfrac{S_{FME}}{S_{ABC}}}\) (3)

Cộng vế (1);(2);(3) \(\Rightarrow\sqrt{\dfrac{S_{MGJ}}{S_{ABC}}}+\sqrt{\dfrac{S_{IDM}}{S_{ABC}}}+\sqrt{\dfrac{S_{FME}}{S_{ABC}}}=\dfrac{BG+GJ+JC}{BC}=1\)

\(\Rightarrow S_{ABC}=\left(\sqrt{S_{MGJ}}+\sqrt{S_{IDM}}+\sqrt{S_{FME}}\right)^2\le3\left(S_{MGJ}+S_{IDM}+S_{FME}\right)\)

Mà \(S_{MGJ}+S_{IDM}+S_{FME}=S_{ABC}-\left(S_{AIMF}+S_{BGMD}+S_{CEMJ}\right)\)

\(\Rightarrow S_{ABC}\le3\left[S_{ABC}-\left(S_{AIMF}+S_{BGMD}+S_{CEMJ}\right)\right]\)

\(\Rightarrow S_{AIMF}+S_{BGMD}+S_{CEMJ}\le\dfrac{2}{3}S_{ABC}\)

Nguyễn Việt Lâm
17 tháng 2 2022 lúc 19:41

undefined

Ánh Tuyết
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 11 2021 lúc 22:19

a: Xét tứ giác AEMF có 

\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)

Do đó: AEMF là hình chữ nhật

:vvv
Xem chi tiết
Thu Thao
2 tháng 2 2021 lúc 14:30

Sau gần một buổi trưa lăn lội với Thales, đồng dạng ở câu b thì t đã nghĩ đến cách của lớp 7 ~ ai dè làm được ^^undefined

Võ Văn Phùng
2 tháng 2 2021 lúc 23:07

Sao bổ sung hình vẽ không được vậy nè

Khách vãng lai đã xóa
Thái Bùi Ngọc
Xem chi tiết
Buì Đức Quân
Xem chi tiết
Trần Hà trang
4 tháng 5 2019 lúc 18:05

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

Trần Hà trang
4 tháng 5 2019 lúc 18:08

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

Nguyễn Lê Phước Thịnh
27 tháng 8 2022 lúc 13:11

Câu 4: 

a: Xét ΔABD vuông tại B và ΔAED vuông tại E có

AD chung

góc BAD=góc EAD

Do đó: ΔBAD=ΔEAD
b: Ta có: AB=AE

DB=DE

Do đó: AD là đường trung trực của BE

c: Xét ΔBDF vuông tại B và ΔEDC vuông tại E có

DB=DE

góc BDF=góc EDC

Do đó: ΔBDF=ΔEDC

Suy ra: BF=EC

LOONA Heejin
Xem chi tiết
LOONA Heejin
24 tháng 12 2019 lúc 8:26

Huhu ai giúp mình với T_T

Khách vãng lai đã xóa
𝚈𝚊𝚔𝚒
24 tháng 12 2019 lúc 8:58

M A B C D E O I K 1 2

a) Xét tứ giác ADME có:

\(MD//AE\left(MD//AC\right)\)

\(ME//AD\left(ME//AB\right)\)

\(\Rightarrow ADME\)là hình bình hành ( dấu hiệu 1 )

b) Vì ADME là hình bình hành ( câu a ) 

\(\Rightarrow DE\)cắt \(AM\)tại trung điểm 

Mà O là trung điểm DE

\(\Rightarrow\)O là trung điểm AM

\(\Rightarrow\)A,O,M thẳng hàng (đpcm)

c) Xét \(\Delta AIM\)vuông tại I có IO là đường trung tuyến

\(\Rightarrow OI=OA=OM=\frac{1}{2}AM\)

\(\Rightarrow\Delta AOI\)cân tại O

\(\Rightarrow\widehat{A_1}\)\(=\widehat{I_1}\)

Xét \(\Delta AOI\)có: \(\widehat{O_1}=\widehat{A_1}+\widehat{I_1}\)( định lý góc ngoài tam giác )

                           \(\Rightarrow\widehat{O_1}=2.\widehat{A_1}\)

CMTT: \(\widehat{O_2}=2.\widehat{A_2}\)

Ta có: \(\widehat{IOK}=\widehat{O_1}+\widehat{O_2}=2\left(\widehat{A_1}+\widehat{A_2}\right)=2\widehat{BAC}=2.60^o=120^o\)

Vậy \(\widehat{IOK}=120^o\)

#Bảo___

Khách vãng lai đã xóa
Nguyễn Đức Trường
Xem chi tiết
Thúy Ngân
25 tháng 10 2019 lúc 19:07

Vẽ hình: Bạn tự vẽ được hăm?
a) Ta có: AE // MF; AF // ME
=> Tứ giác AFME là HBH.
b) HBH AFME + đk \(\widehat{FAE}=90^o\)\(\Rightarrow\)AFME là HCN.
Mà \(\widehat{FAE}=90^O\Leftrightarrow\widehat{BAC}=90^O\)\(\Leftrightarrow\)\(\Delta ABC\)vuông tại A.

Khách vãng lai đã xóa
Hn . never die !
25 tháng 10 2019 lúc 19:15
Giải :

A B C M F E

a, Xét \(\diamond AFME\), có :

EM // AF (vì EM // AB)

FM // AE (vì FM // AC)

\(\Rightarrow\diamond AFME\) là hình bình hành.

b, Để \(\diamond AFME\) là hình chữ nhật \(\Rightarrow\text{​​}\diamond AFME\) có \(\widehat{A}=\widehat{F}=\widehat{M}=\widehat{E}=90^0\) \(\Rightarrow\bigtriangleup ABC\) có \(\widehat{A}=90^0\) hay \(\bigtriangleup ABC\) vuông tại A.

Khách vãng lai đã xóa