Cho tứ giác ABCD có E là trung điểm của AD; F là trung điểm của BC chứng minh rằng AB+CD>=2EF từ đó suy ra tứ giác ABCD là hình gì nếu EF=(AB+CD)/2
Cho tứ giác ABCD có E là trung điểm của AD; F là trung điểm của BC chứng minh rằng AB+CD>=2EF từ đó suy ra tứ giác ABCD là hình gì nếu EF=(AB+CD)/2
Giả sử tứ giác ABCD là hình thang ( AB // CD)
Xét hình thang ABCD ta có:
E là trung điểm AD (gt)
F là trung điểm BC (gt)
=> EF là đường trung bình của hình thang ABCD
=> EF = ( AB + CD)/2
Vậy tứ giác ABCD là hình thang ( AB // CD) thì EF = ( AB + CD)/2
Giả sử tứ giác ABCD là hình thang ( AB // CD)
Xét hình thang ABCD ta có:
E là trung điểm AD (gt)
F là trung điểm BC (gt)
=> EF là đường trung bình của hình thang ABCD
=> EF = ( AB + CD)/2
Vậy tứ giác ABCD là hình thang ( AB // CD) thì EF = ( AB + CD)/2
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~
Cho tứ giác ABCD có E là trung điểm của AD; F là trung điểm của BC chứng minh rằng AB+CD>=2EF từ đó suy ra tứ giác ABCD là hình gì nếu EF=(AB+CD)/2
Cho tứ giác ABCD có E là trung điểm của AD; F là trung điểm của BC chứng minh rằng AB+CD>=2EF từ đó suy ra tứ giác ABCD là hình gì nếu EF=(AB+CD)/2
Cho tứ giác ABCD có E , F lần lượt là trung điểm của AD , BC và 2EF = AB + CD . Chứng minh ABCD là hình thang
Cho tứ giác ABCD có M là trung điểm AB ; E là trung điểm của BC ; N là trung điểm CD ; F là trung điểm của AD .
a) Chứng minh MENF là hình bình hành
b) Gọi P là điểm thuộc BC ( PB khác PC ) , Q là điểm thuộc AD ( QA khác QD ). Biết MNPQ là hình bình hành . Hỏi tứ giác ABCD là hình gì ? Tại sao ?
Cho tứ giác ABCD có AB=CD . Gọi E,F,H,Q là trung điểm của AD,AC,BC,BD . Chứng minh tứ giác EFHQ là hình thoi
Xet tam giac ABC ta co : F la trung diem AC *(gt) H la trung diem BC ( gt)===> FH la duong trung binh --> FH// AB va FH=1/2 AB
xet tam giac ABD ta co : E la trung diem AD( gt), Q la trung diem BD (gt)------> EQ la duong trung binh--> EQ//AB va EQ=1/2 AB
ta co : FH//AB (cmt) va EQ//AB (cmt)---> FH// EQ
FH=1/2 AB va EQ=1/2 AB ( cmt)--> FH=EQ
xet tu giac EFHQ ta co : FH// EQ va FH=EQ ( cmt)--> tu giac EFHQ la hbh ( tu giac co 2 cap canh doi vua // vua bang nhau)
Xet tam giac ADC ta co : E la trung diem AD ( gt) , F la trung diem AC ( gt)--> EF la duong trung binh -> EF=1/2 DC
ta co : EF=1/2DC ( cmt)
FH=1/2 AB ( cmt)
AB=DC ( gt)
==> EF = FH
xet hbh EFHQ ta co EF= FH ( cmt)--> tu giac EFHQ la hinh thoi ( tu giac co 2 canh ke bang nhau )
Cho tứ giác ABCD có AB không song song với CD, BC < AD. Gọi E, F lần lượt là trung điểm của đường chéo AC và BD thỏa mãn EF= AD- BC \ 2
CMR : tứ giác ABCD là hình thang
Bạn ơi có đáp án câu này không mình xin với. Mình cũng đang học
Cho hình bình hành ABCD có AD = 2AB, góc A = 60°. Gọi E, F lần lượt là trung điểm của BC và AD a) Chứng minh tứ giác ABEF là hình bình hành b) Chứng minh tứ giác BFDC là hình thang cân
tham khảo
a) Ta có: (F là trung điểm của AD)
(E là trung điểm của BC)
mà AD=BC(Hai cạnh đối trong hình bình hành ABCD)
nên AF=BE
Xét tứ giác AFEB có
AF//BE(AD//BC, F∈AD, E∈BC)
AF=BE(cmt)
Do đó: AFEB là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Ta có: (gt)
mà (F là trung điểm của AD)
nên AB=AF
Hình bình hành AFEB có AB=AF(cmt)
nên AFEB là hình thoi(Dấu hiệu nhận biết hình thoi)
⇒Hai đường chéo AE và BF vuông góc với nhau tại trung điểm của mỗi đường(Định lí hình thoi)
hay AE⊥BF(đpcm)
b) Ta có: AFEB là hình thoi(cmt)
nên AF=FE=EB=AB và (Số đo của các cạnh và các góc trong hình thoi AFEB)
hay
Xét ΔFEB có FE=EB(cmt)
nen ΔFEB cân tại E(Định nghĩa tam giác cân)
Xét ΔFEB cân tại E có (cmt)
nên ΔFEB đều(Dấu hiệu nhận biết tam giác cân)
⇒(Số đo của một góc trong ΔFEB đều)
Ta có: AB//FE(hai cạnh đối trong hình thoi ABEF)
nên (hai góc đồng vị)
hay
Ta có: tia FE nằm giữa hai tia FB,FD
nên
(1)
Ta có: AD//BC(hai cạnh đối trong hình bình hành ABCD)
nên (hai góc trong cùng phía bù nhau)
hay (2)
Từ (1) và (2) suy ra
Xét tứ giác BFDC có
FD//BC(AD//BC, F∈AD)
nên BFDC là hình thang có hai đáy là FD và BC(Định nghĩa hình thang)
Hình thang BFDC có (cmt)
nên BFDC là hình thang cân(Dấu hiệu nhận biết hình thang cân)
Bài 4: Cho tứ giác ABCD(AB//CD). Gọi E;F;K theo thứ tự là trung điểm của AD;BC;AC.
1) So sánh các độ dài của tam giác MIK
2) Chứng minh EF=AB+CD/2
Bài 5: Cho tam giác ABC có D là trung điểm của AB.Tia Dz//BC cắt AC tại E. chứng minh E là trung điểm của AC
Bài 5:
Xét ΔABC có
D là trung điểm của AB
DE//BC
Do đó: E là trung điểm của AC
Bài 4:
2: Xét hình thang ABCD có
E,F lần lượt là trung điểm của AD,BC
=>EF là đường trung bình của hình thang ABCD
=>EF//AB//CD và \(EF=\dfrac{AB+CD}{2}\)