Cho tam giác ABC bằng tam giác DEF Gọi M;N lần lượt là trung điểm của BC;EF chứng minh AM = DN
GỌI AH, DK LẦN LƯỢT LÀ ĐG CAO CỦA TAM GIÁC ABC VÀ TAM GIÁC DEF. CHO TAM GIÁC ABC ĐỒNG DẠNG VỚI TAM GIÁC DEF. CM \(\frac{AH}{DK}\)BẰNG TỈ SỐ ĐỒNG DẠNG. TÍNH TỈ SỐ \(S_{ABC}:S_{DEF}\)
Cho tam giác ABC và gọi D, E, F lần lượt là trung điểm các cạnh AB, BC, AC. Chứng minh rằng chu vi tam giác ABC bằng hai lần chu vi tam giác DEF.
Xét ΔABC có
D là trung điểm của AB
F là trung điểm của AC
Do đó: DF là đường trung bình của ΔABC
Suy ra: \(DF=\dfrac{BC}{2}\)
Xét ΔABC có
D là trung điểm của AB
E là trung điểm của BC
Do đó: DE là đường trung bình của ΔBAC
Suy ra: \(DE=\dfrac{AC}{2}\)
Xét ΔACB có
F là trung điểm của AC
E là trung điểm của BC
Do đó: FE là đường trung bình của ΔACB
Suy ra: \(FE=\dfrac{AB}{2}\)
Ta có: \(C_{DEF}=DF+DE+EF\)
\(=\dfrac{AB+AC+BC}{2}\)
\(=\dfrac{C_{ABC}}{2}\)
Cho tam giác ABC bằng tam giác DEF biết AB:AC:BC = 2:3:4 và chu vi tam giác ABC = 36cm. Hỏi độ dài cạnh AB của tam giác DEF bằng
cho tam giác ABC và tam giác DEF biết B = F và AB = EF . a) với điều kiện nào thì tam giác ABC và tam gáic DEF bằng nhau trường hợp c.g.c , viết kí hiệu về sự bằng nhau của hai tam giác đó.
b) Cho tam giác ABC và tam giác tam giác DEF bằng nhau như câu a . Tính chu vi của mỗi âtm giác biết AB = 5CM , ac = 6CM , DF = 6cm.
Cho tam giác abc = tam giac def . Gọi m,n lần lượt là trung điểm của bc,ef. Chứng minh A) tam giác bam = tam giác den B) góc mac = góc ndf
a)
+ Có hai tam giác ABC và tam giác DEF bằng nhau nên các cặp cạnh tương ứng của hai tam giác bằng nhau.
\(\Rightarrow\) BC = EF
\(\Rightarrow\) BM = EN (vì BM = BC/2, EN = EF/2 (1)
+ Có hai tam giác ABC và tam giác DEF bằng nhau nên các góc tương ứng của hai tam giác bằng nhau.
\(\Rightarrow\) Góc ABC = EFBC = góc DEF (2)
+ Có hai tam giác ABC và tam giác DEF bằng nhau nên các cặp cạnh tương ứng của hai tam giác bằng nhau.
\(\Rightarrow\) AB = DE
+ Xét hai tam giác BAM và tam giác DEN, ta có:
\(\left\{{}\begin{matrix}BM=EM\\\widehat{ABC}=\widehat{DEF}\\AB=DE\end{matrix}\right.\)
nên hai tam giác BAM và tam giác DEN bằng nhau theo trường hợp cạnh - góc - cạnh.
b)
+ Có \(\left\{{}\begin{matrix}\Delta ABC=\Delta DEF\\\Delta ABM=\Delta DEN\end{matrix}\right.\)
nên \(\Delta ABC-\Delta ABM=\Delta DEF-\Delta DEN\)
\(\Rightarrow\) Hai tam giác AMC và tam giác DNF bằng nhau.
\(\Rightarrow\) Hai góc MAC và góc NDF tương ứng bằng nhau.
Mong cái này giúp được bạn nhé. ☺
Cho tam giác abc=tam giác def có:AB=DE,A=D,BC=EF.Hỏi tam giác abc và tam giác def có bằng nhau ko ? gt
xét 2 tam giác vuông ABC và tam giác EDF, ta có:
cạnh góc vuông : AB = DE
góc nhọn : ABC = DEF
=> tam giác ABC = tam giác DEF ( cgv - gn )
Lý thuyết : Cạnh góc vuông - góc nhọn: Nếu một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông này bằng một cạnh góc vuông
và một góc nhọn kề cạnh ấy của tam giác vuông kia thì hai tam giác đó bằng nhau (cgv-gn)
Cho tam giác ABC và tam giác DEF có: AB=DE,BC=EF,AC=DF.
Xét ΔABC và ΔDEF có:
AB=DE(gt)
BC=EF(gt)
AC=DF(gt)
⇒ΔABC=ΔDEF (c.c.c).
Học tốt nhé!
cho tam giác ABC và tam giác DEF biết B = F và AB = EF .
a) với điều kiện nào thì tam giác ABC và tam gáic DEF bằng nhau trường hợp c.g.c , viết kí hiệu về sự bằng nhau của hai tam giác đó.
b) Cho tam giác ABC và tam giác tam giác DEF bằng nhau như câu a . Tính chu vi của mỗi âtm giác biết AB = 5CM , ac = 6CM , DF = 6cm.
a/ Ta có: \(\widehat{B}\)=\(\widehat{F}\); AB = EF
Để tam giác ABC = tam giác DEF theo trường hợp cạnh góc cạnh, ta cần bổ sung điều kiện BC = FD
Khi đó. tam giác ABC = tam giác EFD (c.g.c)
b/ Ta có: tam giác ABC = tam giác EFD
=> AB = EF; BC = FD; AC = DE
Chu vi tam giác ABC = tam giác EFD
AB + BC + AC = EF + FD + DE = 5 + 6 + 6
= 17 (cm)
Vậy chu vi tam giác ABC=chu vi tam giác EFD = 17 cm
cho tam giác ABC và tam giác DEF biết B = F và AB = EF .
a) với điều kiện nào thì tam giác ABC và tam gáic DEF bằng nhau trường hợp c.g.c , viết kí hiệu về sự bằng nhau của hai tam giác đó.
b) Cho tam giác ABC và tam giác tam giác DEF bằng nhau như câu a . Tính chu vi của mỗi âtm giác biết AB = 5CM , ac = 6CM , DF = 6cm.
c) trên tia đối của tiia AC lấy điểm M sao cho AM = AB . trên đoạn thẳng AB lấy điểm N sao cho AN = AC.
Chứng minh MN vuông góc với BC.
Cho tam giác ABC = tam giác DEF . Gọi M và N lần lượt là trung điểm của BC , EF . Chứng minh AN=BN
Vẽ các đường cao AD, BE,CF của tam giác nhọn ABC. Gọi K, M, N lần lượt là trực tâm của các tam giác AEF, BFD, CDE. Chứng minh rằng các tam giác KMN, DEF bằng nhau