Cho tam giác ABC Vẽ BD và CE _|_AM. CMR:
a. BD=CE;DM=EM
b. AB+AC>2AM
CHO TAM GIÁC ABC CÂN TẠI A. VẼ CÁC ĐƯỜNG PHÂN GIÁC BD, CE
a. CMR: BD=CE b. BD CẮT CE TẠI I. CMR: TAM GIÁC BIC CÂN VÀ TAM GIÁC BIE= TAM GIÁC CID
c. CMR:AI VUÔNG GÓC VS ED VÀ ED // BC
a/ ta có \(\hept{\begin{cases}\widehat{ACE}=\widehat{BCE}=\widehat{\frac{ACB}{2}}\\\widehat{ABD}=\widehat{CBD}=\widehat{\frac{ABC}{2}}\end{cases}}\)( tia phân giác )
mà \(\widehat{ACB}=\widehat{ABC}\)( tam giác cân)
nên ACE=BCE=ABD=CBD
xét tam giác ABD và tam giác ACE có
ABD=ACE(cmt) ; góc A chung ; AB=AC(tam giác cân)
=> tam giác ABD=tam giác ACE (G-C-G) => BD=CE
b/ ta có BCE=CBD (cmt) => tam giác BIC cân tại I
xét tam giácBIE và tam giác CID có
BI=IC(tam giác BIC cân) ; BIE=ICD(ABD=ACE) ; BIE=CID(2 góc đối đỉnh)
=> tam giác BIE= tam giác CID (G-C-G)
c/ ta có BD, CE là tia p/g cắt nhau tại I => I là gđ của 3 đg phân giác của tam giác ABC
=> AI là tia phân giác của BAC
ta có AB=AE+BE ; AC=AD+DC
mà BE=CD ( tam giác BIE= tam giác CID) ; AB=AC (tam giác ABC cân)
nên AE=AD => tam giác AED cân
mặt khác AI là tia phân giác => AI là đường cao => AI vuông góc vs ED
ta có \(\hept{\begin{cases}\widehat{AED}=\frac{180^0-\widehat{A}}{2}\\\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\end{cases}}\)(tam giác cân)
=> AED=ABC
mà 2 góc nằm ở vị trí đồng vị => ED//BC
A) Ta có \(\Delta\)ABC cân tại A =>góc ABC= góc ACB => \(\frac{1}{2}\)góc ABC =\(\frac{1}{2}\)góc ACB => góc DBC = góc ECB = góc DBE = góc DCE
Xét \(\Delta\)ECB và \(\Delta\)DBC có
-góc DBC = góc ECB
- BC chung
-góc EBC = góc DCB
=> \(\Delta\)ECB = \(\Delta\)DBC ( g.c.g )
=> CE =BD
B, Ta có góc IBC = góc ICB ( góc DBC =góc ECB chứng minh trên )
=> \(\Delta\)IBC cân tại I => BI = CI
Xét \(\Delta\)BIE và \(\Delta\)CID có
- góc BIE = góc CID ( 2 góc đối đỉnh )
- IB =CI ( chứng minh trên )
- góc IBE =ICD ( chứng minh trên ý a )
=> \(\Delta\)BIE =\(\Delta\)CID (g.c.g)
C, Ta có AB =AC ( \(\Delta\)ABC cân tại A )
Mà BE =CD ( \(\Delta\) EBD =\(\Delta\)DCE )
=> AE =AD (1)
Lại có BD =CE ( chứng minh trên ý a )
Mà BI =CI ( chứng minh trên )
=> EI =ID (2)
Từ (1) và (2) => AI là đường trung trực của ED
=> AI \(⊥\)ED
Ta có \(\Delta\)EAD cân tại A có Ai là đường phân giác => góc EAI = góc DAI
Lại có \(\Delta\)ABC cân tại A có AI là tia phân giác đồng thời là đường cao => AI \(⊥\)BC
\(\hept{\begin{cases}AI⊥DE\\AI⊥BC\end{cases}}\)
=> ED sog sog BC
Chúc bạn học giỏi
Kết bạn với mình nha
Cho tam giác ABC có AB = AC. Vẽ BD vuông góc với AC, CE vuông góc với AB. BD giao CE = {0}. CMR:
a) BD = CE.
b) Tam giác DEB = tam giác ODC
c) AD là tia phân giác của góc BAC.
a) Xét tam giác ABD và tam giác ACE có
góc ADB = góc AEC = 90 độ
AB=AC
góc A: chung
=> tam giác ABD = tam giác ACE (cạnh huyền - góc nhọn)
=> BD=CE và AD=AE
b) Vì AB=AC và AE=AD
=> AB-AE=AC-AD
=> BE=CD
Xét tam giác OEB và tam giác ODC có
góc OEB = góc ODC = 90 độ
BE=CD
góc BOE = góc COD (đối đỉnh)
=> tam giác OEB = tam giác ODC
=> OB=OC
c) Xét tam giác AOB và tam giác AOC có
AB=AC
OB=OC AO: cạnh chung
=> tam giác AOB = tam giác AOC (c.c.c)
=> góc OAB=góc OAC
=> AO la tia phân giác góc BAC
cho tam giác ABC vuông cân tại A qua A vẽ đường thẳng d sao cho B và C cùng thuộc nửa mặt phẳng bờ d vẽ BD vuông góc vs d tại D, CE vuông góc vs d tại E. CMR
a) DE=BD+CE, BD2+CE2=AB2
b)Gọi M là trung điểm cạnh DC. CMR tam giác DME là tam giác Vuông cân
Các bn giúp mik bài này nhanh nhanh với:
1)cho tam giác abc cân tại a. Vẽ BD vuông góc AC, CE vuông góc AB, AF vuông góc BC. CMR: các đường thẳng AF,BD,CE cùng đi qua 1 điểm
2) Cho tam giác ABC cân tại đỉnh A. Qua A vẽ đường thẳng d sao cho: B,C cùng thuộc nửa mặt phẳng bờ d. Vẽ BD,CE cùng vuông góc với d. CMR: Tam giác DBA=Tam giác EAC
Cho tam giác ABC vuông tai A có AB=AC. Qua điểm A vẽ đường thẳng xy (B,C nằm cùng phía với xy). Kẻ BD và CE vuông góc với xy. CMR :
a) Tam giác BAD = Tam giác ACE
b)DE= BD+CE
Cho tam giác ABC có BD,CE là các phân giác . CMR : Nếu BD=CE thì tam giác ABC cân tại A
cho tam giác ABC : A = 90: Vẽ N thuộc BC sao cho BN = BA. Vẽ BD vuông góc AN ( D thuộc AN )
a, CMR: BD là tia phân giác của ABC
b, Lấy M thuộc CB sao cho CM = CA. Kẻ tia CE là tia pphângiacs ACN. CMR: ME vuông góc AN.
c, Cho CE, BD cắt nhau tại O, cắt AM tại F, BD cắt AM tại I. CM: IE = AD.
có vẽ hình
a: Xét ΔBDA vuông tại D và ΔBDN vuông tại D có
BA=BN
BD chung
Do đó: ΔBDA=ΔBDN
=>\(\widehat{ABD}=\widehat{NBD}\)
=>\(\widehat{ABD}=\widehat{CBD}\)
=>BD là phân giác của góc ABC
Cho tam giác ABC. Vẽ BD vuông góc AC, CE vuông góc AB. Hai đường thẳng BD và CE cắt nhau tại H.
a, CMR: ABD=ACE
b, Giả sử ABC=65, ACB=45. Tính BHC
a) Xét ΔABD vuông tại D
=>^A+^ABD=90°(1)
Xét ΔACE vuông góc tại E
=>^A+^ACE=90°(2)
Từ (1) và (2)
=>^ABD=^ACE(đpcm)
b) Xét ΔABC có:
^BAC+^ABC+^ACB=180°(đl tổng ba góc tam giác)
=>^BAC=180°-65°-45°=70°
Xét ΔCAE vuông tại E
=>^CAE+^ACE=90°
=>^ACE=90°-70°=20°
Xét ΔCHD vuông tại D
=>^CHD+^DCH=90°
=>^CHD=70°
=>^CHD+^BHC=180°
=>^BHC=110°
Cho tam giác ABC vuông tại A. Trung tuyến BD và CE. CMR BD^2+CE^2=(5.BC^2)/4