Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sóii Trắngg
Xem chi tiết
Minh
Xem chi tiết
Nguyễn Hữu Hoàng Hải Anh
Xem chi tiết
Trà My
28 tháng 1 2017 lúc 17:18

A B C D E K G H

a)

+) Ta có: \(\widehat{DAB}=\widehat{EAC}=90^o\)=> \(\widehat{DAB}+\widehat{BAC}=\widehat{EAC}+\widehat{BAC}\Leftrightarrow\widehat{DAC}=\widehat{EAB}\)

Xét tam giác DAC và tam giác BAE có:

AD = AB ( vì tam giác BAD vuông cân tại A )

\(\widehat{DAC}=\widehat{EAB}\) (chứng minh trên)

AE = AC ( vì tam giác CAE vuông cân tại A )

=> \(\Delta DAC=\Delta BAE\left(c.g.c\right)\)=> DC = BE (2 cạnh tương ứng)

+) Đặt H là giao điểm của DC và BE, G là giao điểm của AC và BE

Góc AGE và góc HGC đối đỉnh nên \(\widehat{AGE}=\widehat{HGC}\) (1)

\(\Delta DAC=\Delta BAE\Rightarrow\widehat{AEB}=\widehat{ACD}\) ( 2 góc tương ứng ) (2)

Tam giác AEG có: \(\widehat{AEG}+\widehat{EGA}+\widehat{GAE}=180^o\) (tổng 3 góc trong tam giác)

Tam giác HGC có: \(\widehat{GHC}+\widehat{GCH}+\widehat{HGC}=180^o\) (tổng 3 góc trong tam giác)

=>\(\widehat{AEG}+\widehat{GAE}+\widehat{GAE}=\)\(\widehat{GHC}+\widehat{GCH}+\widehat{HGC}\)

Kết hợp với (1) và (2) => \(\widehat{GAE}=\widehat{GHC}=90^o\Leftrightarrow DC⊥BE\) 

Việt Anh Hoàng
Xem chi tiết
lê nguyễn tấn phát
14 tháng 3 2017 lúc 18:31

dang giải từ từ đi

Việt Anh Hoàng
14 tháng 3 2017 lúc 18:34

nhanh lên bạn! thank bạn!

lê nguyễn tấn phát
14 tháng 3 2017 lúc 18:43

bạn ơi hình như đề có vấn đề hay sao ấy

bạn coi lại thử

Việt Anh Hoàng
Xem chi tiết
Nguyễn Văn Mạnh
Xem chi tiết
OH-YEAH^^
Xem chi tiết
Trần Tuấn Hoàng
16 tháng 3 2022 lúc 20:41

a) \(\widehat{DAC}=\widehat{DAB}+\widehat{BAC}=\widehat{CAE}+\widehat{BAC}=\widehat{BAE}\)

\(AD=AB;AC=AE\)

\(\Rightarrow\)△ADC=△ABE (c-g-c).

b) AB cắt DC tại F.

 \(90^0=\widehat{DAF}=180^0-\widehat{DFA}-\widehat{ADF}=180^0-\widehat{BFK}-\widehat{FBK}=\widehat{FKB}\)

\(DB^2+KC^2=DK^2+KB^2+BC^2-KB^2=BC^2+DK^2\)

 

Trần Tuấn Hoàng
16 tháng 3 2022 lúc 20:42

a) \(\widehat{DAC}=\widehat{DAB}+\widehat{BAC}=\widehat{CAE}+\widehat{BAC}=\widehat{BAE}\)

\(AD=AB;AC=AE\)

\(\Rightarrow\)△ADC=△ABE (c-g-c).

b) AB cắt DC tại F.

 \(90^0=\widehat{DAF}=180^0-\widehat{DFA}-\widehat{ADF}=180^0-\widehat{BFK}-\widehat{FBK}=\widehat{FKB}\)

\(DB^2+KC^2=DK^2+KB^2+BC^2-KB^2=BC^2+DK^2\)

c) Trên tia đối IA lấy G sao cho IA=IG

\(\Rightarrow\)△ADI=△GEI (c-g-c) \(\Rightarrow\)AD//GE.

△DGI=△EAI (c-g-c) \(\Rightarrow\)DG//AE ; DG=AE=AC.

\(90^0+\widehat{BAH}+\widehat{DAG}+90^0+\widehat{GAE}+\widehat{HAC}=360^0\)

\(\Rightarrow\widehat{BAC}+\widehat{DAE}=180^0\)

\(\Rightarrow\widehat{BAC}=\widehat{ADG}\)

\(\Rightarrow\)△ADG=△BAC (c-g-c).

\(\widehat{ABC}+\widehat{BAH}=\widehat{DAG}+\widehat{BAH}=90^0\)

OH-YEAH^^
Xem chi tiết
OH-YEAH^^
Xem chi tiết
Kaito Kid
16 tháng 3 2022 lúc 19:06

Câu a)
Ta có : góc BAD = góc CAE ( = 90 độ )
=> góc BAD + góc BAC = góc CAE + góc BAC
=> góc DAC = góc BAE
Xét tam giác DAC và tam giác BAE có :
góc DAC = góc BAE ( CMT )
AD = AB ( do tam giác ABD vuông cân tại A )
AC = AE ( do tam giác ACE vuông cân tại A )
=> tam giác DAC = tam giác BAE ( cgc )
=> DC = BE ( cặp cạnh tương ứng )
và góc ADC = góc ABE ( cặp góc tương ứng )
Gọi DC giao BE tại H
Gọi DC giao AB tại O
Do tam giác ADO vuông tại A ( GT )
=> góc ODA + góc DOA = 90 độ
Mà góc ODA = góc ABH ( CMT )
và góc DOA = BOH ( 2 góc đối đỉnh )
=> góc BOH + góc OHB = 90 độ
=> tam giác OBH vuông tại H
=> OH vuông góc BH
hay DC vuông góc BE
Vậy....

Kaito Kid
16 tháng 3 2022 lúc 19:06

Câu c)
Kẻ AM vuông góc BC cắt DE tại I
Gọi KA giao DE tại N
Xét tam giác KAC và tam giác IEA có :
AC = AE ( do tam giác ACE vuông cân tại A )
góc KAC = góc IEA ( cùng phụ với góc NAE )
góc ACK = góc IAE ( cùng phụ với góc MAC )
=> tam giác KAC = tam giác IEA ( gcg )
=> CK = AI
CMTT : BK = AI
=> CK = BK
=> K là trung điểm BC
Vậy....