Cho tam giác ABC có góc A nhọn. Về phía ngoài của tam giác ABC vẽ tam giác BAD vuông cân tại A, tam giác CAE vuông cân tại A.
Chứng minh: a) ΔADC=ΔABE
b) Gọi K là giao của DC và BE. C/m: DB2+KC2=BC2+DK2
c) Gọi I là trung điểm của DE. C/m: IA⊥BC
Làm phần c) thôi nha (5 coin cho ng trl đầu, đúng)
Ét o ét, Ét o ét
a) \(\widehat{DAC}=\widehat{DAB}+\widehat{BAC}=\widehat{CAE}+\widehat{BAC}=\widehat{BAE}\)
\(AD=AB;AC=AE\)
\(\Rightarrow\)△ADC=△ABE (c-g-c).
b) AB cắt DC tại F.
\(90^0=\widehat{DAF}=180^0-\widehat{DFA}-\widehat{ADF}=180^0-\widehat{BFK}-\widehat{FBK}=\widehat{FKB}\)
\(DB^2+KC^2=DK^2+KB^2+BC^2-KB^2=BC^2+DK^2\)
a) \(\widehat{DAC}=\widehat{DAB}+\widehat{BAC}=\widehat{CAE}+\widehat{BAC}=\widehat{BAE}\)
\(AD=AB;AC=AE\)
\(\Rightarrow\)△ADC=△ABE (c-g-c).
b) AB cắt DC tại F.
\(90^0=\widehat{DAF}=180^0-\widehat{DFA}-\widehat{ADF}=180^0-\widehat{BFK}-\widehat{FBK}=\widehat{FKB}\)
\(DB^2+KC^2=DK^2+KB^2+BC^2-KB^2=BC^2+DK^2\)
c) Trên tia đối IA lấy G sao cho IA=IG
\(\Rightarrow\)△ADI=△GEI (c-g-c) \(\Rightarrow\)AD//GE.
△DGI=△EAI (c-g-c) \(\Rightarrow\)DG//AE ; DG=AE=AC.
\(90^0+\widehat{BAH}+\widehat{DAG}+90^0+\widehat{GAE}+\widehat{HAC}=360^0\)
\(\Rightarrow\widehat{BAC}+\widehat{DAE}=180^0\)
\(\Rightarrow\widehat{BAC}=\widehat{ADG}\)
\(\Rightarrow\)△ADG=△BAC (c-g-c).
\(\widehat{ABC}+\widehat{BAH}=\widehat{DAG}+\widehat{BAH}=90^0\)