cho tam giác ABC có B = 120 độ , phân giác là BD;CE . Đường thẳng tia phân giác ngoài tại đỉnh A của tam giác ABC cắt BC tại F . Chứng minh rằng :a, góc ADF=góc BDF b, 3 điểm D,E,F thẳng hàng
Cho tam giác ABC có góc B bằng 120 ° , BC = 12cm, AB = 6cm. Đường phân giác của góc B cắt cạnh AC tại D. Tính độ dài đường phân giác BD
Suy ra tam giác ABE đều ⇒ AB = BE = EA = 6 (cm) (1)
Khi đó: CE = BC + BE = 12 + 6 = 18 (cm)
Tam giác ACE có AE // BD nên suy ra:
cho tam giác abc có góc b = 120 độ,phân giác bd;ce.đường chứa tia phân giác góc ngoài tại đỉnh a của tam giác abc cắt bc tại f.từ k kẻ fi,fk,fh lần lượt vuông góc với các đường thẳng bd,ba,ac.cmr:fi=fk=fh
cho tam giác abc có góc b = 120 độ,phân giác bd;ce.đường chứa tia phân giác góc ngoài tại đỉnh a của tam giác abc cắt bc tại f.từ k kẻ fi,fk,fh lần lượt vuông góc với các đường thẳng bd,ba,ac.cmr:fi=fk=fh
Cho tam giác ABC có góc B bằng 120 độ,BC = 12cm,AB = 6cm.Đường phân giác của góc B cắt cạnh AC tại D
a) Tính độ dài đường phân giác BD
b) Gọi M là trung điểm của BC.Chứng minh AM vuông góc với BD.
c) Tính AM và diện tích tam giác ABM
a) Từ A kẻ AE//BD cắt đường thẳng CB tại E
=> ^BAE=^DBA=^B/2=60* và ^ABE=60* (kề bù với ^B)
=> ∆ABE đều nên AB=BE=AE=6
Do BD//AE suy ra: BD/AE=CB/CE
mà CE=CB+BE=12+6=18cm
ta có BD/6=12/18 suy ra BD=12.6/18=4 (cm)
b) Xét ∆ABM có AB=BM =6cm (do BM=MC=BC/2)
nên ∆ABM cân tại B mà BD là đường phân giác nên cũng là đường cao
do đó BD vuông góc với AM.
cho tam giác abc có góc b bằng 120 độ, bc = 12cm, AB=6cm. Đường phân giác của góc B cắt AC tại D.
a) tính đường phân giác BD.
b) M là trung điểm của BC. CHứng minh AM vuông góc với BD
Cho tam giác ABC có góc B= 120 độ, BC= 12 cm, AB=6cm,đường phân giác góc B cắt AD tại D.
a/ Tính BD
b/ Tính tỉ số diện tích của tam giác ABD và tam giác ABC
c/ Tính diện tích tam giác ABD, tam giác BCD
d/ M là trung điểm BC. Chứng minh: AM vuông góc BD
Cho tam giác ABC có góc B bằng 120∘120∘, BC = 12cm, AB = 6cm. đường phân giác của góc B cắt cạnh AC tại D.
a) Tính độ dài đường phân giác BD.
b) Gọi M là trung điểm của BC. Chứng minh AM⊥ BD.
.
a) Ta có:
ˆABD=ˆCBD=\(\frac{\widehat{ABC}}{2}\)=120∘: 2=60∘
Từ A kẻ đường thẳng song song với BD cắt CD tại E.
Lại có:
ˆBAE=ˆABD=60∘(so le trong)
ˆCBD=ˆAEB=60∘ (đồng vị)
Suy ra tam giác ABE đều
⇒AB=BE=EA=6(cm)(1)
Khi đó: CE = BC + BE = 12 + 6 = 18 (cm)
Tam giác ACE có AE // BD nên suy ra:
\(\frac{BC}{CE}\)=\(\frac{DC}{AE}\)⇒BD=\(\frac{BC.AE}{CE}\)=\(\frac{12.6}{18}\)=4(cm)
b) Ta có:
MB=MC=\(\frac{1}{2}\).BC=\(\frac{1}{2}\).12=6(cm)(2)
Từ (1) và (2) suy ra:
BM=AB⇒BM=AB⇒ ∆ABM cân tại B.
Tam giác cân ABM có BD là đường phân giác nên đồng thời nó cũng là đường cao (tính chất tam giác cân). Vậy BD⊥AM
tk mik nha
a) Ta có:
\(\widehat{ABD}=\widehat{CBD}=\frac{\widehat{ABC}}{2}=\frac{120^o}{2}=60^o\)
Từ A kẻ đường thẳng song song với BD cắt CB tại E
Lại có:
\(\widehat{BAE}=\widehat{ABD}=60^o\) ( so le trong )
\(\widehat{CBD}=\widehat{AEB}=60^o\) ( đồng vị )
Suy ra tam giác ABE đều
=> AB = BE = EA = 6 ( cm ) (1)
Khi đó: CE = BC + BE = 12 + 6 = 18 ( cm )
Tam giác ACE có AE // BD nên suy ra :
\(\frac{BC}{CE}=\frac{BD}{AE}\)
\(\Rightarrow BD=\frac{BC.AE}{CE}=\frac{12.6}{18}=4\left(cm\right)\)
b) Ta có:
\(MB=MC=\frac{1}{2}.BC=\frac{1}{2}.12=6\left(cm\right)\left(2\right)\)
Từ (1) và (2) suy ra:
BM = AB => Tam giác ABM cân tại B.
Tam giác cân ABM có BD là đường phân giác nên đồng thời nó cũng là đường cao ( tính chất tam giác cân )
Vậy \(BD\perp AM\)
Cho tam giác ABC,góc B= 120 độ,BC=12,AB=6.Phân giác góc B cắt AC tại D. Tính diện tích ABd
Cho tam giác abc với các đường cao ah, biết góc abc=120, ab=6,25cm, bc=12,5cm. Đường phân giác của góc b cắt ac tại d.
a) Tính độ dài bd
b) Tính tỷ số diện tích của tam giác abd và abc
c) Tính diện tích của tam giác ABD
. Cho tam giác ABC có góc A=120 độ . Đường phân giác của góc B và góc C là BD và CE cắt nhau tại I.
a, Tính số đo của góc BIC.
b, Kẻ tia IA, hãy tính góc EAI.
c, Điểm I có cách đều ba cạnh của tam giác ABC hay không? Tại sao?
giúp mk vs:((
Bạn bổ sung đề đi bạn: Số đo của góc B và góc C là bao nhiêu???
a) Xét ΔABC có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(Định lí tổng ba góc trong một tam giác)
\(\Leftrightarrow\widehat{B}+\widehat{C}=60^0\)
\(\Leftrightarrow2\left(\widehat{IBC}+\widehat{ICB}\right)=60^0\)
hay \(\widehat{IBC}+\widehat{ICB}=30^0\)
Xét ΔIBC có \(\widehat{BIC}+\widehat{IBC}+\widehat{ICB}=180^0\)(Định lí tổng ba góc trong một tam giác)
\(\Leftrightarrow\widehat{BIC}+30^0=180^0\)
hay \(\widehat{BIC}=150^0\)
Vậy: \(\widehat{BIC}=150^0\)
c) Xét ΔABC có
BD là đường phân giác ứng với cạnh AC(gt)
CE là đường phân giác ứng với cạnh AB(gt)
BD cắt CE tại I(gt)
Do đó: I là tâm đường tròn nội tiếp ΔABC
hay I cách đều ba cạnh của ΔACB