Hai đường tròn tâm O và O' có cùng bán kính, cắt nhau ở A và B. Đoạn nối tâm OO' cắt các đường tròn (O), (O') lần lượt ở C và D. Biết AB = 24cm; CD = 12cm. Bán kính mỗi đường tròn là cm.
Hai đường tròn tâm O và O\' có cùng bán kính, cắt nhau ở A và B. Đoạn nối tâm OO\' cắt các đường tròn (O), (O\') lần lượt ở C và D. Biết AB = 24cm; CD = 12cm. Bán kính mỗi đường tròn là cm.
Cho hai đường tròn O và o' có cùng bán kính cắt nhau tại A và B. đoạn nối tâm OA cắt đường tròn (O) và (O')theo thứ tự ở C và D biết ab=24cm cd=12cm bán kính mỗi đường trong là? giúp mình với ạ mình cảm ơn nhiềuuu
Tự vẽ hình nha=0
Ta có:
\(AC=\sqrt{\left(\dfrac{1}{2}CD\right)^2+\left(\dfrac{1}{2}AB\right)^2}=\sqrt{6^2+12^2}=6\sqrt{5}\left(cm\right)\)
\(R=\dfrac{OO'}{2}+\dfrac{CD}{2}\)
Mặt khác tứ giác `AOBO'` là hình thoi:
\(2R=OO'+CD=OO'+12\left(cm\right)\\ \Rightarrow R=10\left(cm\right)\)
`HaNa♫D`
Cho 2 đường tròn O và O' có cùng bán kính R cắt nhau tại A và B. Đoạn nối tâm OO' cắt đường tròn O và O' lần lượt là M và N.Cho bt MN=6cm; AB=12
a/CM ON=O'M
b/tính độ dài đoạn nối tâm
Cho đoạn thẳng OO' bằng 2cm.
a. Vẽ đường tròn tâm O bán kính 1,5cm, đường tròn này cắt đoạn thẳng OO' tại C và cắt đường thẳng OO' ở D.
b. Vẽ đường tròn tâm O' bán kính bằng 1cm, đường tròn này cắt đoạn thẳng OO' tại E và cắt đường thẳng OO' tại F. Hai đường tròn trên cắt nhau ở A và B.
c. Hãy kể tên đường kính của đường tròn (O’; 1cm) và đường kính của đường tròn (O; 1,5cm) và các dây cung của hai đường tròn trên, rồi tính các đường kính đó.
d. Hãy chứng tỏ E là trung điểm của OO'.
e. Tính độ dài đoạn thẳng DF.
a. b.
c. - Đường tròn (O’; 1cm) có đường kính là: EF; Các dây cung là: EA, EB, AB, FA, FB
Vì E thuộc (O’; 1cm) nên EO’=1cm; EF=2.EO’=2cm
- Đường tròn (O; 1,5cm) có đường kính là: DC; Các dây cung là: DA, DB, AB, AC, CB
Vì C thuộc (O; 1,5cm) nên CO=1,5cm; DC=2.CO=3cm
d. Vì đường tròn (O’; 1cm) cắt đoạn thẳng OO’ tại E, nên E nằm giữa 2 điểm O và O’.
Ta có: O E + E O ' = O O ' ⇒ O E = 1 c m
Mà EO’=1cm, nên OE=EO’ (=1cm)
Do đó: E là trung điểm của đợn thẳng OO’.
e. Vì đường tròn (O; 1cm) cắt đường thẳng OO’ tại D, đường tròn (O’; 1cm) cắt đường thẳng OO’ tại F, nên 4 điểm D, O, O’, F lần lượt theo thứ tự đó và DO=1,5cm; O’F=1cm.
Ta có: D F = D O + O O ' + O ' F = 1 , 5 + 2 + 1 = 4 , 5 c m .
Vậy DF=4,5cm
Cho hai đường tròn (O) và (O') có cùng bán kính R cắt nhau tại hai điểm A, B sao cho tâm O nằm trên đường tròn (O') và tâm O' nằm trên đường tròn (O). Đường nối tâm OO' cắt AB tại H, cắt đường tròn (O') tại giao điểm thứ hai là C. Gọi F là điểm đối xứng của B qua O'.
a) Chứng minh rằng AC là tiếp tuyến của (O), và AC vuông góc BF.
b) Trên cạnh AC lấy điểm D sao cho AD = AF. Qua D kẽ đường thăng vuông góc với OC cắt OC tại K, Cắt AF tại G. Gọi E là giao điểm của AC và BF. Chứng minh các tứ giác AHO'E, ADKO là các tứ giác nội tiếp.
c) Tứ giác AHKG là hình gì? Vì sao.
d) Tính diện tích phần chung của hình (O) và hình tròn (O') theo bán kính R.
Cho đường tròn tâm O' bán kính 4.5 cm; đường tròn tâm O bán kính 6cm. Hai đường tròn cắt nhau tại A và B ( O và O' thuộc 2 nửa mặt phẳng bờ là AB ). Gọi I là trung điểm của OO'. Qua A kẻ đường thẳng vuông góc với IA cắt đường tròn tâm O và đường tròn tâm O' lần lượt tại C và D
a) CM AC = AD b) Cho góc OAO' = 90 độ. Tính OO' và AB
cho 2 đường tròn tâm O và O' cùng bán kính R cắt nhau tại A và B. Vẽ 1 cát tuyến qua A cắt (O) tại D và (O') tại E,
a) cm BD=BE
b) đường nối tâm OO' cắt (O') tại M, (O) tại N, AB ở E
cho M nằm giữa I và O; N giữa I và O'. AB=24cm, MN=12cm; Tính R
c) giả sử góc OAO' = 90độ; tính AD^2+AE^2 theo R
cho tam giác ABC cân ở A, vẽ đường tròn tâm D đường kính BC cắt AB và AC lần lượt tại E và F. Các dây BF và CE cắt nhau ở H
a) AEHF thuộc 1 đường tròn, xác định tâm O
b) DE là tiếp tuyến của đường tròn tâm O
c) BC=10cm, AB=13cm. Tính bán kính đường tròn tâm O
cho tam giác ABC cân ở A, vẽ đường tròn tâm D đường kính BC cắt AB và AC lần lượt tại E và F. Các dây BF và CE cắt nhau ở H
a) AEHF thuộc 1 đường tròn, xác định tâm O
b) DE là tiếp tuyến của đường tròn tâm O
c) BC=10cm, AB=13cm. Tính bán kính đường tròn tâm O
Câu b.
Ta có tam giác EOH cân tại O
=> góc OEH=goc OHE
=> góc OHE= góc EHB (vì AHB cân Có HE là đường cao đồng thời là đường phân giác )
xét tứ giác EHDB nt
có gócEHB=gócEDB (cùng chắn EB)
=> góc OEH=gócEDB
Xét ttam giác EHD cân tại H ( H là trực tâm trong tam giác ABC cân)
có góc HED=góc HDE
mà góc HDE+gocEDB=90độ
=> góc HED+gocOEH=90độ
<=>OE vuông góc ED
câu c.
Xét tam giác BDA vuong tại D
AB2=AD2+DB2 (pytago)
AD2=AB2-BD2
AD2=169-25
AD2=144
AD=12
Xet tam giác OED vuông tại E có:
tam giác EHD cân => tam giác HEO cân ( trong tam giác vuông đường trung tuyến là một đoạn thẳng nối từ đỉnh của tam giác tới trung điểm của cạnh đối diện, sẽ chia ra 2 cạch = nhau )
Xét (O) có
O là trung điểm AH
=>OA=OH
Ta lại có H là trung điểm OD
do đó OA=OH=HD
mà AD=12
=>OA=OH=HD=12/3
=>OA=4cm