Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Long Hoàng
Xem chi tiết
ST
17 tháng 7 2017 lúc 8:07

Ta có: \(\frac{1}{1+\frac{2010}{2011}+\frac{2010}{2012}}+\frac{1}{1+\frac{2011}{2010}+\frac{2011}{2012}}+\frac{1}{1+\frac{2012}{2011}+\frac{2012}{2010}}\)

\(=\frac{1}{2010\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}\right)}+\frac{1}{2011\left(\frac{1}{2011}+\frac{1}{2010}+\frac{1}{2012}\right)}+\frac{1}{2012\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}\right)}\)

\(=\frac{\frac{1}{2010}}{\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}}+\frac{\frac{1}{2011}}{\frac{1}{2011}+\frac{1}{2010}+\frac{1}{2012}}+\frac{\frac{1}{2012}}{\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}}\)

\(=\frac{\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}}{\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}}=1\)

Mà \(\frac{2016}{2017}< 1\)

Vậy \(\frac{1}{1+\frac{2010}{2011}+\frac{2010}{2012}}+\frac{1}{1+\frac{2011}{2010}+\frac{2011}{2012}}+\frac{1}{1+\frac{2012}{2010}+\frac{2012}{2011}}>\frac{2016}{2017}\)

Mai Thị Quế Trân
17 tháng 7 2017 lúc 8:00

dấu cần điền là : > 

Vì kết quả của phép tính vế thứ 1 là 1 

và phân số 2016/2017 bé hơn 1 nên ta điền dấu lớn

nguyễn thị ngọc linh
20 tháng 8 2017 lúc 10:35

mình ko hiểu lắm sao tự nhiên lại đang \(\frac{1}{2010.\left[2010+2011+2012\right]}\)lại sang luôn \(\frac{\frac{1}{2010}}{2010+2011+2012}\)

anh
Xem chi tiết
Lung Thị Linh
6 tháng 5 2017 lúc 12:46

Ta có:

\(A=\frac{2010^{2011}+1}{2010^{2012}+1}\)

\(2010A=\frac{2010^{2012}+2010}{2010^{2012}+1}\)

\(2010A=1+\frac{2009}{2010^{2012}+1}\)

Lại có:

\(B=\frac{2010^{2010}+1}{2010^{2011}+1}\)

\(2010B=\frac{2010^{2011}+2010}{2010^{2011}+1}\)

\(2010B=1+\frac{2009}{2010^{2011}+1}\)

Vì \(1+\frac{2009}{2010^{2012}+1}< 1+\frac{2009}{2010^{2011}+1}\)

nên 2010A < 2010B

hay A < B

Vậy A < B

Đinh Bá Duy Cường
Xem chi tiết
Đinh Tuấn Việt
10 tháng 4 2015 lúc 20:11

\(1-A=1-\frac{2010^{2011}+1}{2010^{2012}+1}=\frac{2010^{2012}+1}{2010^{2012}+1}-\frac{2010^{2011}+1}{2010^{2012}+1}=\frac{2010}{2010^{2012}+1}\)

\(1-B=1-\frac{2010^{2010}+1}{2010^{2011}+1}=\frac{2010^{2011}+1}{2010^{2011}+1}-\frac{2010^{2010}+1}{2010^{2011}+1}=\frac{2010}{2010^{2011}+1}\)

Do \(\frac{2010}{2010^{2012}+1}B\)

Phạm Thiết Tường
10 tháng 4 2015 lúc 20:10

Do 20102011+1<20102012+1=>A<1

Tương tự với B;B<1

Theo đề bài ta có:

\(A=\frac{2010^{2011}+1}{2010^{2012}+1}

Thắng Max Level
10 tháng 3 2017 lúc 21:10

A>B bạn nha

CHÚC BẠN HỌC GIỎI

lê hồng kiên
Xem chi tiết
Trần Cao Vỹ Lượng
11 tháng 4 2018 lúc 20:46

\(A=\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2010}\)

\(A=\frac{4064340600}{4066362660}+\frac{4064341605}{4066362660}+\frac{4070408792}{4066362660}\)

\(A=3,000000742\)

\(B=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+....+\frac{1}{17}\)

\(B=1,939552553\)

vì đây là so sánh hai dòng phân số nên ta  đổi ra thập phân nhé

do 3,000000742 > 1,939552553 và 3 > 1 Nên A > B nhé

đúng thì k nhé

chúc học giỏi !!!!

Nguyễn Tiến Đạt
19 tháng 4 2018 lúc 19:10

 A > B nha bạn !!! ( $ _ $ )%%%

Vetnus
Xem chi tiết
Lê Nguyễn Hữu Phước
16 tháng 1 2019 lúc 20:26

A=2.998508205

B=0.999502735

suy ra A>B

Lily
30 tháng 5 2019 lúc 21:04

                                              Bài giải

Theo bài ra :  

\(A=\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2012}\)

\(B=\frac{2009+2010+2011}{2010+2011+2012}=\frac{2009}{2010+2011+2012}+\frac{2010}{2010+2011+2012}+\frac{2011}{2010+2011+2012}\)

Ta có : 

\(\frac{2009}{2010}>\frac{2009}{2010+2011+2012}\)

\(\frac{2010}{2011}>\frac{2010}{2010+2011+2012}\)

\(\frac{2011}{2012}>\frac{2011}{2010+2011+2012}\)

\(\Rightarrow\text{ }\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2012}>\frac{2009}{2010+2011+2012}+\frac{2010}{2010+2011+2012}+\frac{2011}{2010+2011+2012}\)

\(\Rightarrow\text{ }A>B\)

Lily
30 tháng 5 2019 lúc 21:04

                                              Bài giải

Theo bài ra :  

\(A=\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2012}\)

\(B=\frac{2009+2010+2011}{2010+2011+2012}=\frac{2009}{2010+2011+2012}+\frac{2010}{2010+2011+2012}+\frac{2011}{2010+2011+2012}\)

Ta có : 

\(\frac{2009}{2010}>\frac{2009}{2010+2011+2012}\)

\(\frac{2010}{2011}>\frac{2010}{2010+2011+2012}\)

\(\frac{2011}{2012}>\frac{2011}{2010+2011+2012}\)

\(\Rightarrow\text{ }\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2012}>\frac{2009}{2010+2011+2012}+\frac{2010}{2010+2011+2012}+\frac{2011}{2010+2011+2012}\)

\(\Rightarrow\text{ }A>B\)

Thái Thùy Dung
Xem chi tiết
Morgiara
8 tháng 4 2016 lúc 10:44

SBT toán 6

hoang bao nhi
Xem chi tiết
Đào An Nguyên
26 tháng 7 2015 lúc 8:45

Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}

Trần Quỳnh Như
Xem chi tiết
Hà Kiều Linh
Xem chi tiết
Quản gia Whisper
6 tháng 4 2016 lúc 20:12

\(1-A=1-\frac{2010^{2011}+1}{2010^{2012}+1}=\frac{2010^{2012}+1}{2010^{2012}+1}-\frac{2010^{2011}+1}{2010^{2012}+1}\)=\(\frac{2010}{2010^{2012}+1}\)

OoO Love Forever And Onl...
6 tháng 4 2016 lúc 20:15

\(1-A=1-\frac{2010^{2011}+1}{2010^{2012}+1}=\frac{2010^{2012}+1}{2010^{2012}+1}-\frac{2010^{2011}+1}{2010^{2012}+1}=\frac{2010}{2010^{2012}+1}\)

\(1-B=1-\frac{2010^{2010}+1}{2010^{2011}+1}=\frac{2010^{2011}+1}{2010^{2011}+1}-\frac{2010^{2010}+1}{2010^{2011}+1}=\frac{2010}{2010^{2011}+1}\)

\(\frac{2010}{2010^{2012}+1}<\frac{2010}{2010^{2011}+1}\Rightarrow A>B\)

Lê Hiếu Ngân
6 tháng 4 2016 lúc 20:18

Ta có:

\(2010A=\frac{2010^{2012}+2010}{2010^{2012}+1}=\frac{2010^{2012}+1+2009}{2010^{2012}+1}=1+\frac{2009}{2010^{2012}+1}\) 

\(2010B=\frac{2010^{2011}+2010}{2010^{2011}+1}=\frac{2010^{2011}+1+2009}{2010^{2011}+1}=1+\frac{2009}{2010^{2011}+1}\)

Do \(2010^{2012}+1>2010^{2011}+1\) => \(\frac{2009}{2010^{2012}+1}<\frac{2009}{2010^{2011}+1}\)

Nên \(1+\frac{2009}{2010^{2012}+1}<1+\frac{2009}{2010^{2011}+1}\) hay 2010A < 2010B

Vậy A<B