Biết A1=30; B1= 150
Chứng tỏ a//b
Bài 1. Tính giá trị các lũy thừa sau: c) 53 d) 20200 e) 43 f) 12020 Bài 2. Viết kết quả các phép tính sau dưới dạng một lũy thừa: a) b) c) d) 18 12 3 :3 e) 15 15 4 .5 f) 3 3 16 :8 g) 8 4 4 .8 h) 3 2 3 .9 i) 5 2 27 . 3 . k) 4 4 12 12 24 :3 32 :16 m) 12 11 5 .7 5 .10 n) 10 10 2 .43 2 .85 Bài 3. Tính giá trị của biểu thức: 2 A 150 30: 6 2 .5; 2 B 150 30 : 6 2 .5; 2 C 150 30: 6 2 .5; 2 D 150 30 : 6 2 .5. Bài 4. Tìm số tự nhiên x biết: a) (x-6)2 = 9 b) (x-2)2 =25 3 c) 2x - 2 = 8 d) ( e) ( f) 2 (x 1) 4 g) ( h) ( i) ( k) ( m) ( n) ( Bài 5. Tìm số tự nhiên x biết: a) 2x = 32 b) 2 .4 128 x c) 2x – 15 = 17 d) 5x+1=125 e) 3.5x – 8 = 367 f) 3.2 18 30 x g) 5 2x+3 -2.52 =52 .3 h) 2.3x = 10. 312+ 8.274 i) 5x-2 - 3 2 = 24 - (68 : 66 - 6 2 ) k) m) n) Bài 6. Tính giá trị của các biểu thức sau: a) 9 12 . 19 – 3 24 . 19 b) 165 . 23 – 2 18 .5 – 8 6 . 7 c) 212. 11 – 8 4 . 6 – 163 .5 d)12 . 52 + 15 . 62 + 33 .2 .5 e) 34 . 15 + 45. 70 + 33 . 5 Bài 7. Thu gọn các biểu thức sau: a) A= 1+2+22 +23 +24 +....+299+2100 b) B= 5+53 +55 +...+597+599
bài 1: tìm x biết: a,|x-2019|^2020+|x-2020|^2019=1
b, |x-3|^40+|x-4|^30=1
bài 2: với x a b thuộc Z b+x+3=2^4 và 3x+1=4^b
bài 3 : chứng minh 1 số chính phương chi cho 8 dư 0,1,4
bài 4: có tồn tại a1;a2;................;a6 ( 1,2,...là các chỉ số) là các số nguyên lẻ thỏa mãn để a1^2+a2^2+a3^2 a4^2+a5^2=a6^2 (1,2,3,4,5,6là các chỉ số)
bài 1 :tìm x , biết :
(x-7)^ x+1(x-7)^x+11=0
bài 2 :tìm x , biết :
a,|2x-3| > 5 c,|3x-1| ≤ 7 d,|3x-5| + |2x+3| = 7
bài 3 :
a,tính tổng S = 1 + 5^2 + 5^4 + ....... + 5^200.
b,so sánh 2^30 + 3^30 + 4^30 và 3.24^10
tìm các số hữu tỉ a,b,c biết :
1) ab=2 ;bc=3 ;ca =54
2) ab=5/3,bc=4/5,ca=3/4
3)
a(a+b+c)=-12
b(a+b+c)=18
c(a+b+c)=30
1) ab=2 (I); bc=3 (II); ca=54 (III)
Lấy (I).(II).(III) ⇒ a2 . b2 . c2 = 324 ⇒ abc = ±18
(II) ⇒ a= ±6 ; (I) ⇒ b= ±1/3 ; (II) ⇒ c= ±9
2) ab=5/3 (I); bc=4/5 (II); ca=3/4 (III)
Lấy (I).(II).(III) ⇒ a2 . b2 . c2 = 1 ⇒ abc = ±1
(II) ⇒ a= ±5/4 ; (I) ⇒ b= ±4/3 ; (II) ⇒ c= ±3/5
3) a(a+b+c)= -12 (I)
b(a+b+c)= 18 (II)
c(a+b+c)= 30 (III)
Lấy (I)+(II)+(III) ⇒ (a+b+c)2 = 36 ⇒ a+b+c = ±6
TH1 : a=6 ⇒ a= -12/6 = -2 ; b= 18/6 = 3 ; c= 30/6 = 5
TH2 : a=-6 ⇒ a= -12/-6 = 2 ; b= 18/-6 = -3 ; c= 30/-6 = -5
các bạn giải gấp giúp mình 2 bài này nha :)
1) tìm a1 , a2, a3,... a9 , biết:
\(\frac{a1-1}{9}=\frac{a2-2}{8}=\frac{a3-3}{7}=...=\frac{a9-9}{1}\)( a1, a2 ko phải a nhân 1 hay a nhân 2)
và a1 + a2 + a3 + ... + a9 = 90
2) biết \(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}=4\) ; a'+ b'+ c' khác 0; a'-3b'+2c' khác 0 . Tính;
a) \(\frac{a+b+c}{a'+b'+c'}\)
b)\(\frac{a-3b+2c}{a'-3b'+2c'}\)
Biết \(90^0< a< 180^o\); \(0^o< b< 90^o\) và \(cos\left(a-\dfrac{b}{2}\right)=-\dfrac{1}{4}\); \(sin\left(\dfrac{a}{2}-b\right)=\dfrac{1}{3}\). Giá trị biểu thức \(P=72cos\left(a+b\right)+49\) bằng
A. \(P=4\sqrt{30}\)
B. \(P=2\sqrt{30}\)
C. \(P=-4\sqrt{30}\)
D. \(P=-2\sqrt{30}\)
Lời giải:
Đặt $a-\frac{b}{2}=x; \frac{a}{2}-b=y$ thì $45^0< x< 180^0; -45^0< y< 90^0$
$\cos x=\frac{-1}{4}; 45^0< x< 180^0$ nên $\sin x=\frac{\sqrt{15}}{4}$
$\sin y=\frac{1}{3}; -45^0< y< 90^0$ nên $\cos y=\frac{2\sqrt{2}}{3}$
\(P=72\cos (2x-2y)+49=72[2\cos ^2(x-y)-1]+49=144\cos ^2(x-y)-23\)
\(=144(\cos x\cos y+\sin x\sin y)^2-23=-4\sqrt{30}\)
Đáp án C.
Bài 1: Cho a+b+c+d+30 \(\ne\) 0.
Tìm a biết: \(\frac{a+b}{b+3}=\frac{3+d}{a+d}\).
Bài 2: Tính: \(B=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)....\left(1-\frac{1}{n^2}\right)..\)
tìm y biết
a) y+30%y=-1,3
b) y-25%y=1/2
c)\(3\frac{1}{3}\)y+\(16\frac{3}{4}\)=-13,25
a) ta có : y + 30/100y = -1,3
hay y(1+ 3/10) = - 13/10
y.13/10 = -13/10
y= -13/10:13/10
y= -1
b) y - 25/100y=1/2
hay y(1-1/4)=1/2
y.3/4 = 1/2
y=2/3
c) 10/3y + 16,75 = -13,25
10/3y= -13,25 - 16,75
10/3y= -30
y= - 30:10/3
y= -9
Bài 1: Cho a+b+c+d+30 \(\ne0\)
Tìm a biết: \(\frac{a+b}{3+b}=\frac{3+d}{a+d}\).
Bài 2: Tính:
\(\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)....\left(1-\frac{1}{n^2}\right)\)
1.Tính
a.-15,5×20,8+3,5×9,2-15,59,2+3,5×20,8
b. [(-19,95)+(-45,75)]+[4,95+5,75]
2.Tìm x,y biết :
a.2|2x-3|=1
b.7.5-3|5-2x|=-4,5
c.|3x-4|+|3y+5|=0
3.So sánh
a.2^300 và 3^200
b.2^30+3^30+4^30 và 3×2×4^10
2)
a) \(2\left|2x-3\right|=1\)
=> \(\left|2x-3\right|=1:2\)
=> \(\left|2x-3\right|=\frac{1}{2}\)
=> \(\left[{}\begin{matrix}2x-3=\frac{1}{2}\\2x-3=-\frac{1}{2}\end{matrix}\right.\) => \(\left[{}\begin{matrix}2x=\frac{1}{2}+3=\frac{7}{2}\\2x=\left(-\frac{1}{2}\right)+3=\frac{5}{2}\end{matrix}\right.\) => \(\left[{}\begin{matrix}x=\frac{7}{2}:2\\x=\frac{5}{2}:2\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\frac{7}{4}\\x=\frac{5}{4}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{7}{4};\frac{5}{4}\right\}.\)
b) \(7,5-3\left|5-2x\right|=-4,5\)
=> \(4,5\left|5x-2\right|=-4,5\)
=> \(\left|5x-2\right|=\left(-4,5\right):4,5\)
=> \(\left|5x-2\right|=-1\)
Ta luôn có: \(\left|x\right|>0\forall x\)
=> \(\left|5x-2\right|>-1\)
=> \(\left|5x-2\right|\ne-1\)
Vậy không tồn tại giá trị nào của \(x\) thỏa mãn yêu cầu đề bài.
c) \(\left|3x-4\right|+\left|3y+5\right|=0\)
Ta có: \(\left|3x-4\right|>\) hoặc \(=0\forall x\)
\(\left|3y+5\right|>\) hoặc \(=0\forall y.\)
=> \(\left|3x-4\right|+\left|3y+5\right|=0\)
=> \(\left[{}\begin{matrix}3x-4=0\\3y+5=0\end{matrix}\right.\) => \(\left[{}\begin{matrix}3x=0+4=4\\3y=0-5=-5\end{matrix}\right.\) => \(\left[{}\begin{matrix}x=4:3\\y=\left(-5\right):3\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\frac{4}{3}\\y=-\frac{5}{3}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{4}{3}\right\};y\in\left\{-\frac{5}{3}\right\}.\)
Chúc bạn học tốt!
Bài 1:
a) \(-15,5.20,8+3,5.9,2-15,5.9,2+3,5.20,8\)
\(=20,8.\left(-15,5+3,5\right)+9,2.\left(-15,5+3,5\right)\)
\(=\left(-15,5+3,5\right).\left(20,8+9,2\right)\)
\(=\left(-12\right).30=-360\)
b) \(\left[\left(-19,95\right)+\left(-45,75\right)\right]+\left[4,95+5,75\right]\)
\(=\left[\left(-19,95\right)+4,95\right]+\left[\left(-45,75\right)+5,75\right]\)
\(=-15+\left(-40\right)=-55\)
Bài 2 :
\(a,2.\left|2x-3\right|=1\)
\(\Leftrightarrow\left|2x-3\right|=\frac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=\frac{1}{2}\\2x-3=-\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{1}{2}+3\\2x=-\frac{1}{2}+3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{7}{2}\\2x=\frac{5}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{7}{4}\\x=\frac{5}{4}\end{matrix}\right.\)
Vậy : \(x\in\left\{\frac{7}{4},\frac{5}{4}\right\}\)
\(b,7.5-3\left|5-2x\right|=-4.5\)
\(\Leftrightarrow3.\left|5-2x\right|=7.5-\left(-4.5\right)=12\)
\(\Leftrightarrow\left|5-2x\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}5-2x=4\\5-2x=-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=1\\2x=9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=\frac{9}{2}\end{matrix}\right.\)
Vậy : \(x\in\left\{\frac{1}{2},\frac{9}{2}\right\}\)
\(c,\left|3x-4\right|+\left|3y+5\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-4=0\\3y+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x=4\\3y=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{4}{3}\\y=-\frac{5}{3}\end{matrix}\right.\)
Vậy : \(\left(x,y\right)=\left(\frac{4}{3},-\frac{5}{3}\right)\)
Bài 3 :
a) \(2^{300}\) và \(3^{200}\)
Ta có : \(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
mà : \(9^{100}>8^{100}\Rightarrow3^{200}>2^{300}\)
Vậy : \(3^{200}>2^{300}\)
b) \(2^{30}+3^{30}+4^{30}\) và \(3.2.4^{10}\)
Ta có : \(3.2.4^{10}=6.\left(2^2\right)^{10}=6.2^{20}=3.2^{21}\)
Ta thấy : \(2^{30}>3.2^{21}\Rightarrow2^{30}+3^{30}+4^{30}>3.2^{21}\)
hay : \(2^{30}+3^{30}+4^{30}>3.2.4^{10}\)
Vậy : \(2^{30}+3^{30}+4^{30}>3.2.4^{10}\)
Chúc bạn học tốt !