Cho tam giác ABC có D;E;F lần lượt là trung điểm của BC;AC;AB. Trên BC lấy hai điểm M và N sao cho BM=MN=NC. Gọi AM cắt BE tại P. AN cắt CF tại Q. Chứng minh rằng: D;P;F thẳng hàng.
Cho hình tam giác ABC có BC=27cm.Trên cạnh BC lấy điểm D sao cho DC = 9cm.Nối A với D được hình tam giác ADC có S =36cm2. Tính S tam giác ABC ,biết hình tam giác ADC có đáy là 9cm
Ta có \(\frac{S_{ABC}}{S_{ADC}}=\frac{BC}{DC}=\frac{27}{9}=3\)( vì tam giác ABC và tam giác ADC có chung đường cao kẻ từ đỉnh A)
=> \(\frac{S_{ABC}}{36}=3\)
SABC=3x36=108(cm2)
Đáp số: 108 cm2
Bài 1:Cho tam giác ABC có A=80 độ,B=40 độ.Tia phân giác của góc C cắt AB tại D.Tính số đo góc CDA;CDB.
Bài 2:Cho tam giác ABC=tam giác DEF có AB=3cm,DF= 4cm,EF=5cm.Tính chu vi của mỗi tam giác.
Bài 3:Cho tam giác ABC có AB=AC,D là trung điểm của BC(D thuộc BC).Chứng minh:
a)Tam giác ABD= tam giác ACD b)BAD=CAD c)AD vuông góc BC
LƯU Ý:NHỮNG BÀI TRÊN KO CÓ BÀI NÀO CÓ HÌNH CẢ
Bài 3:
a: Xét ΔABD và ΔACD có
AB=AC
AD chung
BD=CD
Do đó: ΔABD=ΔACD
b: Ta có: ΔABD=ΔACD
nên \(\widehat{BAD}=\widehat{CAD}\)
c: Ta có: ΔABC cân tại A
mà AD là đường trung tuyến
nên AD là đường cao
cho tam giác ABC vuông tại B có góc A=50 độ, lấy điểm D trên tia AB.Sao cho AD=AC, từ D kẻ DE vuông góc AC tại E.a,chứng minh tam giác ABC=tam giác AED . b,chứng minh tam giác ABC là tam giác cân
a: Xét ΔABC vuông tại B và ΔAED vuông tại E có
AC=AD
\(\widehat{A}\) chung
Do đó: ΔABC=ΔAED
b: Đề sai rồi bạn
Bài 1:cho tam giác ABC có AB = 4cm , AC = 5cm, BC = 3cm
a)chứng minh tam giác ABC là tam giác vuông
b)so sánh các góc của tam giác ABC
Bài 2:cho tam giác ABC có AB<AC . Tia phân giác của góc A cắt BC tại D.
a)Chúng minh tam giác ABD = tam giác AED
b)So sánh BD, DC
Bài 1:
a: Xét ΔABC có \(AC^2=AB^2+BC^2\)
nên ΔABC vuông tại B
b: XétΔABC có BC<AB<AC
nên \(\widehat{A}< \widehat{C}< \widehat{B}\)
Cho tam giác ABC lấy điểm D trên cạnh BC. Nối với đỉnh A. Đoạn thẳng AD=3cm.Chia tam giác ABC thành hai tam giác ABD có 12cm, tam giác ADC có chu vi 16cm.Tính chu vi hình tam giác ABC
Chu vi tam giác ABC là : 12 + 16 = 28 ( cm )
Câu 17: Cho ABC có AB = AC và = 2 có dạng đặc biệt nào:
A. Tam giác cân B. Tam giác đều
C. Tam giác vuông D. Tam giác vuông cân
Câu 18: Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Độ dài cạnh BC là:
A. 7cm B. 12,5cm C. 5cm D.
Câu 19: Tam giác ABC có AB = 12cm, AC = 13cm, BC = 5cm. Khi đó vuông tại:
A. Đỉnh A B. Đỉnh B C. Đỉnh C D. Tất cả đều sai
Câu 20: Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC. Khẳng định nào sau đây sai?
A. ABM = ACM B. ABM= AMC
C. AMB= AMC= 900 D. AM là tia phân giác CBA
Câu 21: Cho tam giác đều ABC độ dài cạnh là 6cm. Kẻ AH vuông góc với BC(H thuộc BC). Độ dài AH là:
A. cm B. 3cm C. cm D. cm
Câu 22: Cho ABC= DEF. Khi đó: .
A. BC = DF B. AC = DF
C. AB = DF D. góc A = góc E
Câu 23. Cho PQR= DEF, DF =5cm. Khi đó:
A. PQ =5cm B. QR= 5cm C. PR= 5cm D.FE= 5cm
Câu 24. Cho tam giác MNP cân tại M, . Khi đó,
A. B. C. D.
Câu 25 : Cho ABC= MNP biết thì:
A. MNP vuông tại P B. MNP vuông tại M
C. MNP vuông tại N D. ABC vuông tại A
Câu 17: Cho ABC có AB = AC và = 2 có dạng đặc biệt nào:
A. Tam giác cân B. Tam giác đều
C. Tam giác vuông D. Tam giác vuông cân
Câu 18: Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Độ dài cạnh BC là:
A. 7cm B. 12,5cm C. 5cm D.
Câu 19: Tam giác ABC có AB = 12cm, AC = 13cm, BC = 5cm. Khi đó vuông tại:
A. Đỉnh A B. Đỉnh B C. Đỉnh C D. Tất cả đều sai
Câu 20: Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC. Khẳng định nào sau đây sai?
A. ABM = ACM B. ABM= AMC
C. AMB= AMC= 900 D. AM là tia phân giác CBA
Câu 22: Cho ABC= DEF. Khi đó: .
A. BC = DF B. AC = DF
C. AB = DF D. góc A = góc E
Câu 23. Cho PQR= DEF, DF =5cm. Khi đó:
A. PQ =5cm B. QR= 5cm C. PR= 5cm D.FE= 5cm
Cho tam giác ABC vuông ở A và tam giác DEF vuông ở D có AB = DE và góc ABC = góc DEF. Chứng minh tam giác ABC = tam giác DEF.
xét 2 tam giác vuông ABC và tam giác EDF, ta có:
cạnh góc vuông : AB = DE
góc nhọn : ABC = DEF
=> tam giác ABC = tam giác DEF ( cgv - gn )
Lý thuyết : Cạnh góc vuông - góc nhọn: Nếu một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông này bằng một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông kia thì hai tam giác đó bằng nhau (cgv-gn)
xét 2 tam giác vuông ABC và tam giác EDF, ta có:
cạnh góc vuông : AB = DE
góc nhọn : ABC = DEF
=> tam giác ABC = tam giác DEF ( cgv - gn )
Lý thuyết : Cạnh góc vuông - góc nhọn: Nếu một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông này bằng một cạnh góc vuông
và một góc nhọn kề cạnh ấy của tam giác vuông kia thì hai tam giác đó bằng nhau (cgv-gn)
Cho hình tam giác abc có bc=27 cm . Trên cạnh bc lấy điểm d sao cho dc= 9cm .Nối a với d được hình tam giác adc có diện tích 36 cm² . Tính diện tích tam giác abc.
Cho tam giác ABC có BC là 27 cm.Trên BC lấy D sao cho DC=9cm.Nối A với D được tam giác ADC có diện tích là 81 cm2.Tính diện tích tam giác ABC ?
cho tam giác ABC vuông cân tại A. Gọi D là điểm nằm trong tam giác ABC sao cho tam giác DAC cân có góc D=15 độ. Tính số đo góc ADB
bài của bại giống hệt bài của mình chỉ khác là của mình điểm D là điểm E