Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
PTTD
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 8 2021 lúc 16:15

\(\dfrac{AB}{AC}=\dfrac{\sqrt{6}}{3}\Rightarrow AB=\dfrac{AC\sqrt{6}}{3}\)

\(AB.AC=32\sqrt{6}\Rightarrow\dfrac{AC^2\sqrt{6}}{3}=32\sqrt{6}\)

\(\Rightarrow AC^2=96\Rightarrow AC=4\sqrt{6}\)

\(\Rightarrow AB=\dfrac{AC\sqrt{6}}{3}=8\)

Kẻ đường cao AD ứng với BC

Do \(C=45^0\Rightarrow\widehat{CAD}=90^0-45^0=45^0\Rightarrow\Delta ACD\) vuông cân tại D

\(\Rightarrow AD=CD=\dfrac{AC}{\sqrt{2}}=4\sqrt{3}\)

Pitago tam giác vuông ABD:

\(BD=\sqrt{AB^2-AD^2}=4\)

\(\Rightarrow BC=CD+BD=4+4\sqrt{3}\)

\(cosB=\dfrac{BD}{AB}=\dfrac{4}{8}=\dfrac{1}{2}\Rightarrow B=60^0\)

\(S_{ABC}=\dfrac{1}{2}AD.BC=\dfrac{1}{2}.4\sqrt{3}.\left(4+4\sqrt{3}\right)=...\)

Nguyễn Việt Lâm
23 tháng 8 2021 lúc 16:15

undefined

Lê Ngọc Bảo Trân
Xem chi tiết
Ninh Thị Trà My
9 tháng 11 2023 lúc 22:44

\(\left[{}\begin{matrix}\\\\\\\end{matrix}\right.\prod\limits^{ }_{ }\int_{ }^{ }dx\sinh_{ }^{ }⋮\begin{matrix}&&&\\&&&\\&&&\\&&&\\&&&\\&&&\end{matrix}\right.\Cap\begin{matrix}&&\\&&\\&&\\&&\\&&\\&&\end{matrix}\right.\)

Ngô Văn Phương
Xem chi tiết
Anni
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 2 2022 lúc 18:18

\(BH=\sqrt{5^2-3^2}=4\left(cm\right)\)

\(CH=\sqrt{45-3^2}=6\left(cm\right)\)

=>BH+CH=BC=10(cm)

Nguyễn Huy Tú
12 tháng 2 2022 lúc 18:19

Theo định lí Pytago tam giác ABH vuông tại H

\(BH=\sqrt{AB^2-AH^2}=4cm\)

Theo định lí Pytago tam giác AHC vuông tại H

\(CH=\sqrt{AC^2-AH^2}=6cm\)

-> BC = BH + CH = 4 + 6 = 10 cm 

mit Minh
Xem chi tiết
Trung Nguyễn Đình Trung
Xem chi tiết
Cao Hà Phương
Xem chi tiết
Cao Hà Phương
Xem chi tiết
Cao Hà Phương
Xem chi tiết
Hoàng Lê Bảo Ngọc
7 tháng 7 2016 lúc 10:20

A B C x y z K

Đặt AB = x>0 , AC = y>0 , BC = z>0

Theo đề bài , ta có : \(\begin{cases}xy=32\sqrt{6}\\\frac{x}{y}=\frac{\sqrt{6}}{3}\end{cases}\) \(\Leftrightarrow\begin{cases}x=8\\y=4\sqrt{6}\end{cases}\)

Theo định lí Cosin, ta có : \(x^2=y^2+z^2-2yz.cos45^o\Leftrightarrow64=96+z^2-8\sqrt{3}z\)\(\Leftrightarrow\left[\begin{array}{nghiempt}z=4+4\sqrt{3}\\z=-4+4\sqrt{3}\end{array}\right.\)

Vậy BC = \(4+4\sqrt{3}\) hoặc BC = \(4\sqrt{3}-4\)

Theo định lí Cosin, ta có : \(y^2=x^2+z^2-2xz.cosB\Rightarrow cosB=\frac{x^2+z^2-y^2}{2xz}\)

+Với \(\begin{cases}x=8\\y=4\sqrt{6}\\z=4+4\sqrt{3}\end{cases}\) thì \(cosB=\frac{1}{2}\Rightarrow\widehat{B}=60^o\)

+Với \(\begin{cases}x=8\\y=4\sqrt{6}\\z=4\sqrt{3}-4\end{cases}\) thì \(cosB=-\frac{1}{2}\Rightarrow\widehat{B}=120^o\)

Để tính diện tích tam giác ABC, ta áp dụng công thức \(S_{\Delta ABC}=\frac{1}{2}BC.AC.sinC\)

Chứng minh như sau : Kẻ đường cao AK (K thuộc BC)

Trong tam giác vuông AKC có : \(AK=sinC.AC\)

Ta có :  \(S_{\Delta ABC}=\frac{1}{2}BC.AK=\frac{1}{2}BC.AC.SinC\)

+Với \(\begin{cases}x=8\\y=4\sqrt{6}\\z=4+4\sqrt{3}\end{cases}\) thì  \(S_{\Delta ABC}=\frac{1}{2}AC.BC.sin45^o=\frac{1}{2\sqrt{2}}.4\sqrt{6}.\left(4+4\sqrt{3}\right)=24+8\sqrt{3}\)

+Với \(\begin{cases}x=8\\y=4\sqrt{6}\\z=4\sqrt{3}-4\end{cases}\) thì \(S_{\Delta ABC}=\frac{1}{2}AC.BC.sin45^o=\frac{1}{2\sqrt{2}}.4\sqrt{6}.\left(-4+4\sqrt{3}\right)=24-8\sqrt{3}\)