Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Phương Thảo
Xem chi tiết
Thanh Tùng DZ
28 tháng 4 2020 lúc 9:15

Ta có a + b > c ; b + c > a ; a + c > b

\(\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+b+c}+\frac{1}{a+b+c}=\frac{2}{a+b+c}>\frac{2}{a+b+a+b}=\frac{1}{a+b}\)

Tương tự : \(\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c},\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c}\)

Vậy ...

Khách vãng lai đã xóa
Big City Boy
Xem chi tiết
nguyen khanh ly
Xem chi tiết
Phước Nguyễn
10 tháng 1 2016 lúc 22:08

\(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=8\)

\(\Leftrightarrow\)  \(\left(1+\frac{c}{b}+\frac{b}{a}+\frac{c}{a}\right)\left(1+\frac{a}{c}\right)=8\)

\(\Leftrightarrow\)  \(1+\frac{c}{b}+\frac{b}{a}+\frac{c}{a}+\frac{a}{c}+\frac{a}{b}+\frac{b}{c}+1=8\)

\(\Leftrightarrow\)  \(\left(\frac{a}{b}+\frac{b}{a}-2\right)+\left(\frac{c}{b}+\frac{b}{c}-2\right)+\left(\frac{c}{a}+\frac{a}{c}-2\right)=0\)

\(\Leftrightarrow\)  \(\frac{a^2+b^2-2ab}{ab}+\frac{c^2+b^2-2bc}{bc}+\frac{c^2+a^2-2ac}{ac}=0\)

\(\Leftrightarrow\)  \(\frac{\left(a-b\right)^2}{ab}+\frac{\left(c-b\right)^2}{bc}+\frac{\left(c-a\right)^2}{ac}=0\)

\(\Leftrightarrow\)  \(a-b=c-b=c-a\)  \(\Leftrightarrow\)  \(a=b=c\)  

Với   \(a,b,c\)   là  \(3\)  cạnh của \(\Delta ABC\)  thì  \(\Delta ABC\)  đều

Phuong Thuy
Xem chi tiết
Trần Tuấn Minh
Xem chi tiết
Lê Song Phương
25 tháng 6 2023 lúc 8:45

a) Thay \(b=a-1\) vào hệ thức thứ hai thì được \(a-1+c=a+4\) hay \(c=5\). Hơn nữa, ta thấy \(a>b\) nên \(b\) không thể là độ dài của cạnh huyền của tam giác vuông được. Sẽ có 2 trường hợp:

 TH1: \(a\) là độ dài cạnh huyền. Khi đó theo định lí Pythagoras thì \(b^2+c^2=a^2\) \(\Rightarrow b^2+25=\left(b+1\right)^2\) \(\Leftrightarrow b^2+25=b^2+2b+1\) \(\Leftrightarrow2b=24\) \(\Leftrightarrow b=12\), suy ra \(a=13\). Vậy \(\left(a,b,c\right)=\left(13,12,5\right)\)

 TH2: \(c\) là độ dài cạnh huyền. Khi đó cũng theo định lý Pythagoras thì \(a^2+b^2=c^2\) \(\Leftrightarrow\left(b+1\right)^2+b^2=25\) \(\Leftrightarrow2b^2+2b-24=0\) \(\Leftrightarrow b^2+b-12=0\) \(\Leftrightarrow\left[{}\begin{matrix}b=3\left(nhận\right)\\b=-4\left(loại\right)\end{matrix}\right.\) \(\Rightarrow a=b+1=4\). Vậy \(\left(a,b,c\right)=\left(4,3,5\right)\)

  Như vậy, ta tìm được \(\left(a,b,c\right)\in\left\{\left(13,12,5\right);\left(4,3,5\right)\right\}\)

b) Bạn không nói rõ b', c' là gì thì mình không tính được đâu. Mình tính b, c trước nhé.

 Do \(b:c=3:4\) nên rõ ràng \(c>b\). Vì vậy \(b\) không thể là độ dài cạnh huyền được. Sẽ có 2TH

 TH1: \(c\) là độ dài cạnh huyền. Khi đó theo định lý Pythagoras thì \(a^2+b^2=c^2\). Do \(b:c=3:4\) nên \(b=\dfrac{3}{4}c\). Đồng thời \(a=125\) \(\Rightarrow125^2+\left(\dfrac{3}{4}c\right)^2=c^2\) \(\Rightarrow\dfrac{7}{16}c^2=125^2\) \(\Leftrightarrow c=\dfrac{500}{\sqrt{7}}\) \(\Rightarrow b=\dfrac{375}{\sqrt{7}}\). Vậy \(\left(b,c\right)=\left(\dfrac{375}{\sqrt{7}},\dfrac{500}{\sqrt{7}}\right)\)

 TH2: \(a\) là độ dài cạnh huyền. Khi đó cũng theo định lý Pythagoras, ta có \(b^2+c^2=a^2=125^2\). Lại có \(b:c=3:4\Rightarrow\dfrac{b}{3}=\dfrac{c}{4}\Rightarrow\dfrac{b^2}{9}=\dfrac{c^2}{16}=\dfrac{b^2+c^2}{25}=\dfrac{125^2}{25}=625\)

\(\Rightarrow b^2=5625\Rightarrow b=75\) \(\Rightarrow c=100\). Vậy \(\left(b,c\right)=\left(75,100\right)\)

Như vậy, ta tìm được \(\left(b,c\right)\in\left\{\left(75,100\right);\left(\dfrac{350}{\sqrt{7}};\dfrac{500}{\sqrt{7}}\right)\right\}\)

 

 

Võ Ngô Kim Tuyền
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 12 2020 lúc 13:17

\(\left(a+b-c\right)\left(b+c-a\right)\le\dfrac{1}{4}\left(a+b-c+b+c-a\right)=b^2\)

Tương tự: \(\left(a+b-c\right)\left(a+c-b\right)\le a^2\)

\(\left(b+c-a\right)\left(c+a-b\right)\le c^2\)

Nhân vế với vế:

\(\left[\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\right]^2\le\left(abc\right)^2\)

\(\Leftrightarrow\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le abc\)

Dấu "=" xảy ra khi \(a=b=c\)

Phan Thị Cẩm Ly
Xem chi tiết
Girl
30 tháng 1 2019 lúc 22:00

Đặt: \(\hept{\begin{cases}a+b-c=x\\b+c-a=y\\c+a-b=z\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=2b\\y+z=2c\\x+z=2a\end{cases}}\)

\(2VT=\frac{2a}{b+c-a}+\frac{2b}{a+c-b}+\frac{2a}{a+b-c}\)

\(=\frac{x+z}{y}+\frac{y+z}{x}+\frac{x+y}{z}=\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)\ge6\)(cauchy)

=> VT>=3(đpcm)

"=" khi a=b=c

DOAN QUOOC BAO
Xem chi tiết

Sửa lại đề : \(A=\frac{a}{b+c-a}+\frac{b}{c+a-b}+\frac{c}{a+b-c}\ge3\)

Chứng minh :

Đặt \(\hept{\begin{cases}x=b+c-a\\y=c+a-b\\z=a+b-c\end{cases}}\)

Vì a,b,c là độ dài 3 cạnh của 1 tam giác 

nên \(x,y,z>0\)

Khi đó : \(\hept{\begin{cases}a=\frac{y+z}{2}\\b=\frac{z+x}{2}\\c=\frac{a+b}{2}\end{cases}}\)

Ta có bất đẳng thức mới theo ẩn x,y,z :

\(\frac{y+z}{2x}+\frac{z+x}{2y}+\frac{x+y}{2z}\ge3\)

\(\Leftrightarrow\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}\right)+\frac{1}{2}\left(\frac{z}{y}+\frac{x}{y}\right)+\frac{1}{2}\left(\frac{x}{z}+\frac{y}{z}\right)\ge3\)

\(\Leftrightarrow\frac{1}{2}\left(\frac{x}{y}+\frac{y}{x}\right)+\frac{1}{2}\left(\frac{y}{z}+\frac{z}{y}\right)+\frac{1}{2}\left(\frac{z}{x}+\frac{x}{z}\right)\ge3\)

Ta chứng minh bất đẳng thức phụ : 

\(\frac{a}{b}+\frac{b}{a}\ge2\forall a,b>0\)

Thật vậy : \(\frac{a}{b}+\frac{b}{a}\ge2\)

\(\Leftrightarrow\frac{a}{b}+\frac{b}{a}-2\ge0\)

\(\Leftrightarrow\frac{a^2}{ab}+\frac{b^2}{ab}-\frac{2ab}{ab}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2}{ab}\ge0\)(luôn đúng \(\forall a,b>0\))

Áp dụng ,ta được : 

\(\frac{1}{2}.2+\frac{1}{2}.2+\frac{1}{2}.2\ge3\)

\(\Leftrightarrow3\ge3\)(đúng)

Vậy bất đẳng thức được chứng minh 

Khách vãng lai đã xóa
Nguyễn Huy Tú
17 tháng 2 2021 lúc 20:15

Đặt \(b+c-a=x;a+c-b=y;a+b-c=z\)

Khi đó \(x;y;z>0\)và \(a=\frac{x+y}{2};b=\frac{x+z}{2};c=\frac{y+z}{2}\)

\(VT=\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}=\frac{1}{2}\left(\frac{x+y}{z}+\frac{y+z}{x}+\frac{z+x}{y}\right)\)

\(=\frac{1}{2}\left(\frac{x}{z}+\frac{y}{z}+\frac{y}{x}+\frac{z}{x}+\frac{z}{y}+\frac{x}{y}\right)=\frac{1}{2}\left(\frac{y}{z}+\frac{z}{y}+\frac{x}{z}+\frac{z}{x}+\frac{y}{x}+\frac{x}{y}\right)\)

AM - GM cho từng cặp số trên : \(VT\ge\frac{1}{2}\left(2+2+2\right)=3\)

Dấu ''='' xảy ra <=> \(x=y=z\Leftrightarrow a=b=c\)

Khách vãng lai đã xóa
lương hoàng châu
Xem chi tiết

 Vì a,b,c là 3 cạnh tam giác nên a,b,c là 3 số dương 
À mà bạn biết tính chất này chứ a/(a+b+c)<a/(b+c) (Cộng vào mẫu a dương nên nhỏ hơn) 
a/(b+c)<(a+a)/(a+b+c)=2a/(a+b+c) (Cộng cả tử với mẫu với a) 
=> Ta có: a/(a+b+c)<a/(b+c)<2a/(a+b+c) (1) 
Tương tự với b: b/(a+b+c)<b/(a+c)<2b/(a+b+c) (2) 
Tương tự với c: c/(a+b+c)<c/(a+b)<2c/(a+b+c) (3) 
Cộng (1) với (2) và (3) ta được đpcm 
1< a/(b+c) + b/(a+c) + c/(a+b) <2

mình lớp 5 mong bạn thông cảm và