Cho hàm số y=f(x) liên tục và có đồ thị trên đoạn [−2;4] như hình vẽ bên. Tổng giá trị lớn nhất và nhỏ nhất của hàm số y=f(x) trên đoạn [−2;4] bằng
A. 5
B. 3
C. 0
D. -2
Cho hàm số y=f(x) liên tục trên đoạn − 4 ; 3 và có đồ thị trên đoạn − 4 ; 3 như sau:
Số điểm cực đại của đồ thị hàm số bằng:
A. 0
B. 2
C. 1
D. 3
Đáp án C
Hàm số có 1 điểm cực đại x = - 3.
Cho hàm số y=f(x) liên tục trên đoạn [1;4] và có đồ thị hàm số y=f'(x) như hình bên. Hỏi hàm số g(x)=f( x 2 + 2 ) nghịch biến trên khoảng nào trong các khoảng sau?
Cho hàm số y = f(x) xác định, liên tục trên đoạn [-2;3] và có đồ thị là đường cong trong hình vẽ bên. Tìm số điểm cực đại của hàm số y = f(x) trên đoạn [-2; 3]
A. 1
B. 0
C. 2.
D. 3
Đáp án C.
Quan sát đồ thị hàm số, ta thấy có hai điểm cực đại thuộc đoạn [-2; 3]
Cho hàm số y = f(x) liên tục trên đoạn [-2; 2] và có đồ thị là đường cong như hình vẽ bên. Tìm số nghiệm của phương trình |f(x)| = 1 trên đoạn [-2; 2].
A. 3
B. 5
C. 6
D. 4
Cho hàm số y=f(x) xác định và liên tục trên đoạn 0 ; 7 2 có đồ thị hàm số y=f '(x) như hình vẽ. Hỏi hàm số y=f(x) đạt giá trị nhỏ nhất trên đoạn 0 ; 7 2 tại điểm x 0 nào dưới đây?
A. x 0 = 2
B. x 0 = 1
C. x 0 = 0
D. x 0 = 3
Cho hàm số y=f(x) liên tục trên đoạn [-2;2] và có đồ thị như hình vẽ:
Số nghiệm của phương trình 3 f ( x + 2 ) - 4 = 0 trên đoạn [-2;2] là?
A. 4
B. 2
C. 3
D. 1
Vậy phương trình (1) có nghiệm trên đoạn [-2;2] khi và chỉ khi phương trình (*) có nghiệm trên đoạn [0;4]
Dựa vào hình vẽ ta nhận thấy trên đoạn [0;4] thì đường thẳng y = 4 3 cắt đồ thị hàm số đã cho đúng tại một điểm. Do đó phương trình (*) có đúng 1 nghiệm hay phương trình (1) có đúng một nghiệm.
Cho hàm số y=f(x) có đạo hàm y=f’(x) liên tục trên R và đồ thị của hàm số f’(x) trên đoạn [-2;6] như hình vẽ bên. Tìm khẳng định đúng trong các khẳng định sau
A. m a x - 2 ; 6 f x = f - 2
B. m a x - 2 ; 6 f x = f 6
C. m a x - 2 ; 6 f x = m a x f - 1 ; f 6
D. m a x - 2 ; 6 f x = f - 1
Cho hàm số y=f(x) liên tục trên đoạn [-1;4] và có đồ thị hàm số y=f’(x) như hình bên. Hỏi hàm số g ( x ) = f x 2 + 1 nghịch biến trên khoảng nào trong các khoảng sau?
A. .
B. .
C. .
D. .
Các nghiệm trên đều là các nghiệm bội lẻ, do đó đều là cực trị của hàm số
Xét x = -1 ta có
từ đó ta có bảng xét dấu g’(x) như sau:
Dựa vào các đáp án ta thấy hàm số y = g(x) nghịch biến trên (0;1)
Chọn B
Cho hàm số f(x) có đạo hàmf'(x) xác định và liên tục trên đoạn [0;6]. Đồ thị hàm số y=f'(x) như hình vẽ bên. Biết f(0)=f(3)=f(6)=-1,f(1)=f(5)=1. Số điểm cực trị của hàm số y = [ f ( x ) ] 2 trên đoạn [0;6] là
A. 5.
B. 7.
C. 9.
D. 8.