Cho A= \(\hept{\begin{cases}1;2;4\\\end{cases}}\)
B= \(\hept{\begin{cases}1;2;3;4;5;7\\\end{cases}}\)
Tìm X sao cho A con X,X con B
cho biểu thức g=\(\hept{\begin{cases}\\\end{cases}\hept{\begin{cases}\\\end{cases}}\hept{\begin{cases}\\\end{cases}}\hept{\begin{cases}\\\end{cases}}}\)\((\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{1}{1-\sqrt{x}}-\frac{2\sqrt{x}}{x-1}).(\sqrt{x}+1)(x>0,x\ne1).\)
\(\hept{\begin{cases}\\\end{cases}\hept{\begin{cases}\\\end{cases}}\hept{\begin{cases}\\\end{cases}}\hept{\begin{cases}\\\\\end{cases}}_{ }_{ }_{ }^2^2^{ }\orbr{\begin{cases}\\\end{cases}}\orbr{\begin{cases}\\\end{cases}}\orbr{\begin{cases}\\\end{cases}}\orbr{\begin{cases}\\\end{cases}}\frac{ }{ }\frac{ }{ }\frac{ }{ }\frac{ }{ }\sqrt[]{}\sqrt{ }}\)
Thế thì đừng hỏi trong khi câu mình ko biết mà người khác cũng ko biết đi cho đỡ phức tạp nhe bạn nhen
tìm x, y biết:
\(\orbr{\begin{cases}\hept{\begin{cases}\hept{\begin{cases}\\\end{cases}}\\\end{cases}}\\\end{cases}}\)\(\hept{\begin{cases}x+y=2\\xy-z^2=1\end{cases}}\)
a)\(\hept{\begin{cases}2x+y=5\\x-y=1\end{cases}}\)b)\(\hept{\begin{cases}2x-3y=3\\2x+5y=5\end{cases}}\)c)\(\hept{\begin{cases}4x-5y=2\\2x-3y=0\end{cases}}\)d)\(\hept{\begin{cases}0,2x+0,3y=-0,2_{ }\\0,3x-0,2y=-0,3\end{cases}}\)e)\(\hept{\begin{cases}0,3x+0,5y=3\\1,5x-2y=1,5\end{cases}}\)GIÚP EM VỚI EM CẦN GẤP ĐÓ MN ƠI
anh làm mẫu 2 câu còn lại em tự làm cho quen nhé, mấy cái hpt như này thì em dùng phương pháp cộng đại số là tối ưu nhất
a, \(\hept{\begin{cases}2x+y=5\\x-y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}3x=6\\y=x-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)
b, \(\hept{\begin{cases}2x-3y=3\\2x+5y=5\end{cases}}\Leftrightarrow\hept{\begin{cases}8y=2\\x=\frac{3+3y}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{1}{4}\\x=\frac{15}{8}\end{cases}}}\)
\(\hept{\begin{cases}1\\3\end{cases}}-\hept{\begin{cases}1\\4\end{cases}}+1=?\)
13/12 nha
Nhớ k ủng hộ vì mình đang bị âm điểm tháng lẫn điểm tuần nè!
Giải PT:
\(a,\hept{\begin{cases}|x|+|y-3|=1\\y-|x|=3\end{cases}}\)
\(b,\hept{\begin{cases}x-4y=5\\2|x-2y|+|x+y|=7\end{cases}}\)\(c,\hept{\begin{cases}|x+1|+|y+1|=5\\|x+1|=4y-4\end{cases}}\)
Ta có:
\(\hept{\begin{cases}|x+1|+|y+1|=5\left(1\right)\\|x+1|=4y-4\left(2\right)\end{cases}}\)
Thay (2) vào (1):
\(4y-4+|y-1|=5\left(3\right)\)
+Nếu \(y\ge-1\Rightarrow4y-4+y+1=5\Rightarrow5y=8\Rightarrow y=\frac{8}{5}\left(TM\right)\)
Thay y = 8/5 vào (2) ta có:
\(|x+1|=4.\frac{8}{5}-4\)
\(\Leftrightarrow|x+1|=\frac{12}{5}\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=\frac{12}{5}\\x+1=\frac{-12}{5}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{7}{5}\\x=-\frac{17}{5}\end{cases}}\)
+Nếu \(y\le-1\Rightarrow4y-4-y-1=5\Rightarrow3y=10\Rightarrow y=\frac{10}{3}\left(L\right)\)
Giải cá hệ phương trình
a) \(\hept{\begin{cases}2x-15y=-7\\10x=11y=31\end{cases}}\)b)\(\hept{\begin{cases}4x+7y=16\\4x-3y=-24\end{cases}}\)c)\(\hept{\begin{cases}0.35x+4y=-2.6\\0.75x-6y=9\end{cases}}\)d)\(\hept{\begin{cases}\sqrt{2}x+2\sqrt{3}y=5\\3\sqrt{2}x-\sqrt{3}y=\frac{9}{2}\end{cases}}\)
e)\(\hept{\begin{cases}10x-9y=8\\15x+21y=6.5\end{cases}}\)f)\(\hept{\begin{cases}3.3x+4.2y=1\\9x+14y=4\end{cases}}\)
cho mk hỏi ai chs lazi điểm danh cái đê ~ mk hỏi thật đấy k đùa nha ~ bình luận thì mk k cho 3 cái ~
Xác định a để 2 hệ phương trình sau là tương đương
a) \(\hept{\begin{cases}2x-3y=5\\4x+y=3\end{cases}}\)và \(\hept{\begin{cases}2x-3y=5\\12x+3y=a\end{cases}}\) b) \(\hept{\begin{cases}x-y=2\\3x+y=1\end{cases}}\)và \(\hept{\begin{cases}2ax-2y=1\\x+ay=2\end{cases}}\)
a) \(\hept{\begin{cases}2x-3y=5\\4x+y=3\end{cases}}\) và \(\hept{\begin{cases}2x-3y=5\\12x+3y=a\end{cases}}\)
Ta thấy \(2x-3y=5\Leftrightarrow2x-3y=5\)(Luôn đúng)
Để 2 hệ tương đương :
\(4x+y=3\Leftrightarrow12x+3y=a\)
\(\Leftrightarrow3\left(4x+y\right)=3.3\)
\(\Leftrightarrow12x+3y=9=a\)
Vậy để 2 hệ phương trình tương đương \(\Leftrightarrow a=9\)
b) \(\hept{\begin{cases}x-y=2\\3x+y=1\end{cases}}\) và \(\hept{\begin{cases}2ax-2y=1\\x+ay=2\end{cases}}\)
Ta có : \(x-y=x+ay=2\)
\(\Leftrightarrow y=-ay\)
\(\Leftrightarrow a=-1\)
Thử lại : \(a=-1\)
\(\Leftrightarrow3x+y=-2x-2y=1\)
\(\Leftrightarrow3x+y-2x-2y=2\)
\(\Leftrightarrow x-y=2\)(TM)
Vậy để 2 hệ phương trình tương đương \(\Leftrightarrow a=-1\)
\(\frac{1}{2}\times10+9=\hept{\begin{cases}?\\+\\5\end{cases}}\)
\(\frac{1}{2}+\frac{1}{2}+56+9+1\hept{\begin{cases}?\\+\\12\end{cases}}\)
\(\frac{1}{2}+\frac{1}{2}\times3+9\hept{\begin{cases}?\\+\\6\end{cases}}\)
\(\frac{1}{2}\times6+67\hept{\begin{cases}?\\+\\13\end{cases}}\)
\(\frac{1}{2}+\frac{1}{2}\times8+7\hept{\begin{cases}?\\+\\6\end{cases}}\)
5 BÀI TOÁN NHÉ!
lớp 2 chưa học phân số nhé bạn nên đổi lại đi
Toán lớp 2 đây à ,lớp 2 chưa học bài này .
Đổi lại đi nhé !
Giải pt:
\(1.\text{ }\hept{\begin{cases}x+2y=5\\3x-y=1\end{cases}}\)
\(2.\text{ }\hept{\begin{cases}9y-2x=10\\4x-2y=12\end{cases}}\)
\(3,\text{ }\hept{\begin{cases}\sqrt{4x-y}=a\\8x-2y=2a^2\end{cases}}\text{ }\left(a\ge0\right)\)
\(1,\hept{\begin{cases}x+2y=5\\3x-y=1\end{cases}\Leftrightarrow}\hept{\begin{cases}3x+6y=15\\3x-y=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=2\end{cases}}\)
\(2,\hept{\begin{cases}9y-2x=10\\4x-2y=12\end{cases}\Leftrightarrow}\hept{\begin{cases}9y-2x=10\\2x-y=6\end{cases}\Leftrightarrow}\hept{\begin{cases}x=4\\y=2\end{cases}}\)
\(3,\hept{\begin{cases}\sqrt{4x-y}=a\\8x-2y=2a^2\end{cases}\Leftrightarrow\hept{\begin{cases}8x-2y=2a^2\\8x-2y=2a^2\end{cases}}\Leftrightarrow khong}cogiatri\)
3)\(\hept{\begin{cases}8x-2y=2a^2\\8x-2y=2a^2\end{cases}}\Leftrightarrow8x-2y=2a^2\) có vô số nghiệm em nhé!