Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-2019;2019] để đồ thị hàm số y = 2 x + 1 4 x 2 − 2 x + m có hai đường tiệm cận đứng?
A. 2020
B. 4038
C. 2018
D. 2019
Có bao nhiêu giá trị nguyên thuộc đoạn [0;2019] của tham số m để phương trình 4 x - m + 2018 2 x + 2019 + 3 m = 0 có hai nghiệm trái dấu?
A.2016
B.2019
C.2013
D.2018
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn - 10 ; 10 để hàm số y = x 3 - 3 x 2 + 3 m x + 2019 nghịch biến trên khoảng 1 ; 2 ?
A. 11
B. 20
C. 10
D. 21
Chọn A.
TXĐ: D = R
Ta có: y ' = 3 x 2 - 6 x + 3 m
Để hàm số đã cho nghịch biến trên 1 ; 2
thì y ' ≤ 0 , ∀ x ∈ 1 ; 2 và bằng 0 tại hữu hạn điểm
Hàm số y = x - 1 2 đồng biến trên 1 ; + ∞ nên cũng đồng biến trên 1 ; 2
Lại có m ∈ - 10 ; 10 và m ∈ Z nên m ∈ - 10 ; - 9 ; . . ; 0
Vậy có 11 giá trị của m
Cho hàm số y = m sin x + 1 cos x + 1 . Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-5;5] để giá trị nhỏ nhất của y nhỏ hơn -1
A. 6
B. 5
C. 4
D. 3
Có tất cả bao nhiêu giá trị nguyên của tham số a thuộc khoảng (0; 2019) để l i m 9 n + 3 n + 1 5 n + 9 n + a ≤ 1 2187 ?
A. 2011
B. 2018
C. 2019
D. 2012
Cho hàm số y = m sin x + 1 cos x + 2 . Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-5; 5] để giá trị nhỏ nhất của y nhỏ hơn -1.
Cho hàm số y = 2 m 3 - 1 4 - 2 x 3 + 2 m - 7 x 2 - 12 x + 2019 . Có bao nhiêu giá trị nguyên của m thuộc đoạn - 15 ; 15 để hàm số đã cho đồng biến trên đoạn - 1 2 ; - 1 4
A. 15
B. 13
C. 28
D. 23
có bao nhiêu giá trị nguyên của tham số m thuộc đoạn -5,5 để pt (m\(^2\)-4)x=m(m-2) có nghiệm duy nhất
Lời giải:
Để $(m^2-4)x=m(m-2)$ có nghiệm duy nhất thì $m^2-4\neq 0$
$\Leftrightarrow (m-2)(m+2)\neq 0$
$\Leftrightarrow m\neq \pm 2$
Mà $m$ nguyên và $m\in [-5;5]$ nên $m\in\left\{-5; -4; -3; -1; 0; 1;3;4;5\right\}$
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-2018;2018] để hàm số y=(m-2)x+2 đồng biến trên R?
A. 2017
B. 2015
C. Vô số
D. 2016
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-2018;2018] để hàm số y = (m-2)x + 2 đồng biến trên ℝ ?
A. 2017
B. 2015
C. Vô số
D. 2016
Chọn D
Phương pháp:
Sử dụng: Hàm số y = ax+b đồng biến ⇔ a > 0, từ đó kết hợp điều kiện đề bài để tìm các giá trị của m.
Cách giải:
Hàm số y = (m-2)x + 2 đồng biến trên ℝ ⇔ m - 2 > 0 ⇔ m > 2
Mà => có 2016 giá trị nguyên của m thỏa mãn đề bài.
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [−10; 10] để phương trình m x 2 - m x + 1 = 0 có nghiệm.
A. 17
B. 18
C. 20
D. 21
Nếu m = 0 thì phương trình trở thành 1 = 0 : vô nghiệm.
Khi m ≠ 0 , phương trình đã cho có nghiệm khi và chỉ khi
∆ = m 2 - 4 m ≥ 0 ⇔ m ≤ 0 m ≥ 4
Kết hợp điều kiện m ≠ 0 , ta được m < 0 m ≥ 4
Mà m ∈ Z và m ∈ [−10; 10] ⇒ m ∈ {−10; −9; −8;...; −1} ∪ {4; 5; 6;...; 10}.
Vậy có tất cả 17 giá trị nguyên m thỏa mãn bài toán.
Đáp án cần chọn là: A