Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thầy Tùng Dương
Xem chi tiết
Nguyễn Thị Hiền Anh
27 tháng 2 2021 lúc 13:50

Áp dụng hệ thức Vi-ét ta có:
y1+y2= 3x1+3x2=3(x1+x2)
=\(\dfrac{-3b}{a}\)
y1y2=\(\dfrac{9c}{a}\)
Ta có pt x^2 +\(\dfrac{3b}{a}x+\dfrac{9c}{a}=0\)

Khách vãng lai đã xóa
Nguyễn Ngọc Anh
27 tháng 1 2022 lúc 20:53

Khách vãng lai đã xóa
Đoàn Phương Thảo
30 tháng 1 2022 lúc 14:26

loading...

 

Khách vãng lai đã xóa
⭐Hannie⭐
Xem chi tiết
Bacon Family
17 tháng 3 2023 lúc 20:27

`a) 7x^2 - 2x + 3 = 0`

`(a = 7; b = -2; c = 3)`

`Δ = b^2 - 4ac = (-2)^2 - 4.7.3 = -80 < 0`

`=>` phương trình vô nghiệm

`b) 6x^2 + x + 5 = 0`

`(a = 6;b = 1;c = 5)`

`Δ = b^2 - 4ac = 1^2 - 4.6.5 = -119 < 0`

`=>` phương trình vô nghiệm

`c) 6x^2 + x - 5 = 0`

`(a = 6;b=1;c=-5)`

`Δ = b^2 - 4ac = 1^2 - 4.6.(-5) = 121 > 0`

`=>` phương trình có 2 nghiệm phân biệt

`x_1 = (-b + sqrt{Δ})/(2a) = (-1+ sqrt{121})/(2.6) = (-1+11)/12 = 10/12 = 5/6`

`x_2 = (-b - sqrt{Δ})/(2a) = (-1- sqrt{121})/(2.6) = (-1-11)/12 = -12/12 = -1`

Vậy phương trình có 1 nghiệm `x_1 = 5/6; x_2 = -1`

 

Minh Hiếu
17 tháng 3 2023 lúc 20:17

ủa, mấy bài đó tương tự như ct mà:

\(7x^2-2x+3=0\) \(\left\{{}\begin{matrix}a=7\\b=-2\\c=3\end{matrix}\right.\)

\(\Delta=b^2-4ac=\left(-2\right)^2-4.7.3=-80\)

Vì \(\Delta< 0\) \(\Rightarrow\) pt vô nghiệm

Ngô Hải Nam
17 tháng 3 2023 lúc 20:19

a)

`7x^2 -2x+3=0`

có \(\Delta=b^2-4ac=\left(-2\right)^2-4\cdot7\cdot3=-80< 0\)

=> phương trình vô nghiệm

b)

`6x^2 +x+5=0`

có \(\Delta=b^2-4ac=1^2-4\cdot6\cdot5=-119< 0\)

=> phương trình vô nghiệm

c)

`6x^2 +x-5=0`

có \(\Delta=b^2-4ac=1^2-4\cdot6\cdot\left(-5\right)=121>0\)

\(=>x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-1+\sqrt{121}}{2\cdot6}=\dfrac{5}{6}\)

\(=>x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-1-\sqrt{121}}{2\cdot6}=-1\)

Đồ Ngốc
Xem chi tiết
Nguyễn Linh Chi
9 tháng 11 2018 lúc 11:14

Áp dụng định lí viet: \(x_1+x_2=-\frac{b}{a},x_1.x_2=\frac{c}{a}\)

\(ax^2+bx+c=a\left(x^2+\frac{b}{a}x+\frac{c}{a}\right)=a\left(x^2-\left(x_1+x_2\right)x+x_1.x_2\right)=a\left[\left(x^2-x_1.x\right)-\left(x_2x-x_1x_2\right)\right]\)

=\(a\left[x\left(x-x_1\right)-x_2\left(x-x_1\right)\right]=a\left(x-x_1\right)\left(x-x_2\right)\)

Đức Dương
Xem chi tiết
Lê Song Phương
5 tháng 2 2022 lúc 15:42

a) Xét phương trình thứ nhất, có \(\Delta_1=b^2-4ac\)

Xét phương trình thứ hai, có \(\Delta_2=b^2-4ca=b^2-4ac\)

Từ đó ta có \(\Delta_1=\Delta_2\), do đó, khi phương trình (1) có nghiệm \(\left(\Delta_1\ge0\right)\)thì \(\Delta_2\ge0\)dẫn đến phương trình (2) cũng có nghiệm và ngược lại.

Vậy 2 phương trình đã cho cùng có nghiệm hoặc cùng vô nghiệm.

b) Vì \(x_1,x_2\)là 2 nghiệm của phương trình (1) nên theo định lý Vi-ét, ta có \(x_1x_2=\frac{c}{a}\)

Tương tự, ta có \(x_1'x_2'=\frac{a}{c}\)

Từ đó \(x_1x_2+x_1'x_2'=\frac{c}{a}+\frac{a}{c}\)

Nếu \(\hept{\begin{cases}a>0\\c>0\end{cases}}\)hay \(\hept{\begin{cases}a< 0\\c< 0\end{cases}}\)thì \(\hept{\begin{cases}\frac{c}{a}>0\\\frac{a}{c}>0\end{cases}}\), khi đó có thể áp dụng bất đẳ thức Cô-si cho 2 số dương \(\frac{c}{a}\)và \(\frac{a}{c}\):

\(\frac{c}{a}+\frac{a}{c}\ge2\sqrt{\frac{c}{a}.\frac{a}{c}}=2\), dẫn đến \(x_1x_2+x_1'x_2'\ge2\)

Nhưng nếu \(\hept{\begin{cases}a>0\\c< 0\end{cases}}\)hay \(\hept{\begin{cases}a< 0\\c>0\end{cases}}\)thì \(\hept{\begin{cases}\frac{c}{a}< 0\\\frac{a}{c}< 0\end{cases}}\),như vậy \(\frac{c}{a}+\frac{a}{c}< 0< 2\)dẫn đến \(x_1x_2+x_1'x_2'< 2\)

Như vậy không phải trong mọi trường hợp thì \(x_1x_2+x_1'x_2'>2\)

Khách vãng lai đã xóa
ngoc nguyen
Xem chi tiết
Trần Ái Linh
19 tháng 3 2023 lúc 17:03

Thay `b=5a+2c` vào `ax^2+bx+c=0`:

`ax^2+(5a+2c)x+c=0`

`=>Delta=(5a+2c)^2-4ac`

`=25a^2+20ac+4c^2-4ac`

`=25a^2+16ac+4c^2`

`=9a^2+(16a^2+16ac+4c^2)`

`=9a^2+(4a+2c)^2>=0`

`=>` ĐPCM

Nguyễn Ngọc Lan Thy
Xem chi tiết
alibaba nguyễn
31 tháng 5 2017 lúc 9:47

Theo Vi et ta có: \(\hept{\begin{cases}x_1+x_2=\frac{-b}{a}\\x_1x_2=\frac{c}{a}\end{cases}}\)

Theo giả thuyết thì:

\(x_1^2+x_2^2=2x_1x_2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=0\)

\(\Leftrightarrow\frac{b^2}{a^2}-\frac{4c}{a}=0\)

\(\Leftrightarrow b^2-4ac=0\)

Vậy ta có ĐPCM

An Van
Xem chi tiết
mo chi mo ni
7 tháng 7 2019 lúc 8:06

Mình chưa học cách chứng minh mệnh đề nhưng mk chứng minh được hệ thức Vi-et:

\(ax^2+bx+c=0\)

\(\Delta=b^2-4ac\)

để phương trình có 2 nghiệm thì \(\Delta\ge0\)

\(\Rightarrow b^2-4ac\ge0\)

phương trình có 2 nghiệm là

\(x_1=\frac{-b+\sqrt{\Delta}}{2a}\)

\(x_2=\frac{-b-\sqrt{\Delta}}{2a}\)

Ta có

\(x_1+x_2=\frac{-b+\sqrt{\Delta}}{2a}+\frac{-b-\sqrt{\Delta}}{2a}\)

               \(=\frac{-2b}{2a}=-\frac{b}{a}\)

\(x_1.x_2=\frac{-b+\sqrt{\Delta}}{2a}.\frac{-b-\sqrt{\Delta}}{2a}\)

          \(=\frac{\left(-b+\sqrt{\Delta}\right).\left(-b-\sqrt{\Delta}\right)}{2a.2a}\)

           \(=\frac{b^2-\Delta}{4a^2}\)

              \(=\frac{b^2-\left(b^2-4ac\right)}{4a^2}\)

               \(=\frac{4ac}{4a^2}=\frac{c}{a}\)

Vo Thi Minh Dao
Xem chi tiết
Quang Anh Dam
Xem chi tiết
Đỗ Ngọc Hoàng Hải
17 tháng 6 2016 lúc 15:10
a) ax^2 + bx + c = 0 Để phương trình thỏa mãn điều kiện có 2 nghiệm dương phân biệt. ∆ > 0 => b^2 - 4ac > 0 x1 + x2 = -b/a > 0 => b và a trái dấu x1.x2 = c/a > 0 => c và a cùng dấu Từ đó ta xét phương trình cx^2 + bx^2 + a = 0 ∆ = b^2 - 4ac >0 x3 + x4 = -b/c, vì a và c cùng dấu mà b và a trái dấu nên b và c trái dấu , vì vậy -b/c >0 x3.x4 = a/c, vì a và c cùng dấu nên a/c > 0 => phương trình cx^2 + cx + a có 2 nghiệm dương phân biệt x3 và x4 Vậy nếu phương trình ax^2 + bx + c = 0 có 2 nghiệm dương phân biệt thì phương trình cx^2 + bx + a = 0 cũng có 2 nghiệm dương phân biệt. b) Ta có, vì x1, x2, x3, x4 không âm, dùng cô si. x1 + x2 ≥ 2√( x1.x2 ) x3 + x4 ≥ 2√( x3x4 ) => x1 + x2 + x3 + x4 ≥ 2[ √( x1.x2 ) + √( x3x4 ) ] (#) Tiếp tục côsi cho 2 số không âm ta có √( x1.x2 ) + √( x3x4 ) ≥ 2√[√( x1.x2 )( x3.x4 ) ] (##) Theo a ta có x1.x2 = c/a x3.x4 = a/c => ( x1.x2 )( x3.x4 ) = 1 => 2√[√( x1.x2 )( x3.x4 ) ] = 2 Từ (#) và (##) ta có x1 + x2 + x3 + x4 ≥ 4
Daffodil Clover
Xem chi tiết
Kiệt Nguyễn
12 tháng 3 2020 lúc 19:27

Chỉ biết phân tích mù mịt cho đẹp thôi chứ không biết đúng hay sai?

Ta có \(L=\left(3-\frac{b}{a}+\frac{c}{a}\right):\left(5-\frac{3b}{a}+\left(\frac{b}{a}\right)^2\right)\)(chia cả tử và mẫu cho a2 khác 0)

Theo hệ thức Vi - et, \(L=\frac{3+\left(x_1+x_2\right)+x_1x_2}{5+3\left(x_1+x_2\right)+\left(x_1+x_2\right)^2}\)

Theo giả thiết \(0\le x_1\le x_2\le2\)\(\Rightarrow\hept{\begin{cases}x_1^2\le x_1x_2\\x_2^2\le4\end{cases}}\)

\(\Rightarrow x_1^2+x_2^2\le x_1x_2+4\Leftrightarrow\left(x_1+x_2\right)^2\le3x_1x_2+4\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4\le3x_1x_2\Leftrightarrow\left(x_1+x_2+2\right)\left(x_1+x_2-2\right)\le3x_1x_2\)

\(\Leftrightarrow\left(x_1+x_2+5\right)\left(x_1+x_2-2\right)-3\left(x_1+x_2-2\right)\le3x_1x_2\)

\(\Leftrightarrow\left(x_1+x_2+5\right)\left(x_1+x_2-2\right)\le3\left(x_1x_2+x_1+x_2-2\right)\)

\(\Leftrightarrow\left(x_1+x_2\right)^2+3\left(x_1+x_2\right)-10\le3\left(x_1x_2+x_1+x_2-2\right)\)

\(\Leftrightarrow\left(x_1+x_2\right)^2+3\left(x_1+x_2\right)+5\le3\left(x_1x_2+x_1+x_2+3\right)\)

Vì \(\left(x_1+x_2\right)^2+3\left(x_1+x_2\right)+5>0\)nên

\(L=\frac{3+\left(x_1+x_2\right)+x_1x_2}{5+3\left(x_1+x_2\right)+\left(x_1+x_2\right)^2}\ge\frac{1}{3}\)

Dấu "=" khi \(\hept{\begin{cases}x_1=0\\x_2=2\end{cases}}\)hoặc \(\hept{\begin{cases}x_1=2\\x_2=2\end{cases}}\)

Khách vãng lai đã xóa